
WebRTC broadcasting with WHIP

Lorenzo Miniero
@elminiero

FOSDEM 2022 Real Time Communications
5th February 2022, Brussels My couch

https://twitter.com/elminiero


Who am I?

Lorenzo Miniero
• Ph.D @ UniNA
• Chairman @ Meetecho
• Main author of Janus

Contacts and info
• lorenzo@meetecho.com
• https://twitter.com/elminiero
• https://www.slideshare.net/LorenzoMiniero
• https://lminiero.bandcamp.com

lorenzo@meetecho.com
https://twitter.com/elminiero
https://www.slideshare.net/LorenzoMiniero
https://lminiero.bandcamp.com


MCU as a WebRTC topology



SFU as a WebRTC topology



A slightly variation on the theme



How “traditional” broadcasting typically works



What if we want more interactivity, though?



What if we want more interactivity, though?



What if we want more interactivity, though?



What if we want more interactivity, though?



Why not WebRTC instead?

• Traditional broadcasting efficient but higher latency
• At best (live), delay will typically be in the range of a few seconds
• Besides, different users may experience different delays (buffering)

• WebRTC natively conceived for very low latency, instead
• Born for conversational audio/video/data
• Can be (and often is) easily used for monodirectional streaming as well

• Strangely not really considered by the industry up until recently, though
• Topic of my Ph.D years ago (“Streaming Of Large scale Events over Internet cLouds”)
• Clearing the industry FUD: https://webrtcbydralex.com/index.php/2020/04/14/

• Tooling an important aspect to foster WebRTC adoption, here
• e.g., a standard way to send media, and tools à la OBS, XSplit, or others

https://webrtcbydralex.com/index.php/2020/04/14/


Why not WebRTC instead?

• Traditional broadcasting efficient but higher latency
• At best (live), delay will typically be in the range of a few seconds
• Besides, different users may experience different delays (buffering)

• WebRTC natively conceived for very low latency, instead
• Born for conversational audio/video/data
• Can be (and often is) easily used for monodirectional streaming as well

• Strangely not really considered by the industry up until recently, though
• Topic of my Ph.D years ago (“Streaming Of Large scale Events over Internet cLouds”)
• Clearing the industry FUD: https://webrtcbydralex.com/index.php/2020/04/14/

• Tooling an important aspect to foster WebRTC adoption, here
• e.g., a standard way to send media, and tools à la OBS, XSplit, or others

https://webrtcbydralex.com/index.php/2020/04/14/


Why not WebRTC instead?

• Traditional broadcasting efficient but higher latency
• At best (live), delay will typically be in the range of a few seconds
• Besides, different users may experience different delays (buffering)

• WebRTC natively conceived for very low latency, instead
• Born for conversational audio/video/data
• Can be (and often is) easily used for monodirectional streaming as well

• Strangely not really considered by the industry up until recently, though
• Topic of my Ph.D years ago (“Streaming Of Large scale Events over Internet cLouds”)
• Clearing the industry FUD: https://webrtcbydralex.com/index.php/2020/04/14/

• Tooling an important aspect to foster WebRTC adoption, here
• e.g., a standard way to send media, and tools à la OBS, XSplit, or others

https://webrtcbydralex.com/index.php/2020/04/14/


Why not WebRTC instead?

• Traditional broadcasting efficient but higher latency
• At best (live), delay will typically be in the range of a few seconds
• Besides, different users may experience different delays (buffering)

• WebRTC natively conceived for very low latency, instead
• Born for conversational audio/video/data
• Can be (and often is) easily used for monodirectional streaming as well

• Strangely not really considered by the industry up until recently, though
• Topic of my Ph.D years ago (“Streaming Of Large scale Events over Internet cLouds”)
• Clearing the industry FUD: https://webrtcbydralex.com/index.php/2020/04/14/

• Tooling an important aspect to foster WebRTC adoption, here
• e.g., a standard way to send media, and tools à la OBS, XSplit, or others

https://webrtcbydralex.com/index.php/2020/04/14/


WebRTC audio: Opus

• WebRTC mandates Opus, and it’s a good thing
• High quality audio codec designed for the Internet
• Very flexible in sampling rates, bitrates, FEC, etc.

• Different profiles for voice and music/other
• Both encoding and decoding vary, in case
• Can be mono and stereo, with dynamic sampling rates and bitrates

• Multiopus (5.1 and 7.1)1

• Each packet is basically OGG with multiple stereo Opus streams
• Number of streams determines number of channels
• Not documented, but used by Google for Stadia

1https://webrtcbydralex.com/index.php/2020/04/08/surround-sound-5-1-and-7-1-in-libwebrtc-and-chrome/

https://webrtcbydralex.com/index.php/2020/04/08/surround-sound-5-1-and-7-1-in-libwebrtc-and-chrome/


WebRTC audio: Opus

• WebRTC mandates Opus, and it’s a good thing
• High quality audio codec designed for the Internet
• Very flexible in sampling rates, bitrates, FEC, etc.

• Different profiles for voice and music/other
• Both encoding and decoding vary, in case
• Can be mono and stereo, with dynamic sampling rates and bitrates

• Multiopus (5.1 and 7.1)1

• Each packet is basically OGG with multiple stereo Opus streams
• Number of streams determines number of channels
• Not documented, but used by Google for Stadia

1https://webrtcbydralex.com/index.php/2020/04/08/surround-sound-5-1-and-7-1-in-libwebrtc-and-chrome/

https://webrtcbydralex.com/index.php/2020/04/08/surround-sound-5-1-and-7-1-in-libwebrtc-and-chrome/


WebRTC audio: Opus

• WebRTC mandates Opus, and it’s a good thing
• High quality audio codec designed for the Internet
• Very flexible in sampling rates, bitrates, FEC, etc.

• Different profiles for voice and music/other
• Both encoding and decoding vary, in case
• Can be mono and stereo, with dynamic sampling rates and bitrates

• Multiopus (5.1 and 7.1)1

• Each packet is basically OGG with multiple stereo Opus streams
• Number of streams determines number of channels
• Not documented, but used by Google for Stadia

1https://webrtcbydralex.com/index.php/2020/04/08/surround-sound-5-1-and-7-1-in-libwebrtc-and-chrome/

https://webrtcbydralex.com/index.php/2020/04/08/surround-sound-5-1-and-7-1-in-libwebrtc-and-chrome/


WebRTC video: Simulcasting & SVC

https://webrtchacks.com/sfu-simulcast/

https://webrtchacks.com/sfu-simulcast/


WebRTC video: Simulcasting & SVC

https://webrtchacks.com/chrome-vp9-svc/

https://webrtchacks.com/chrome-vp9-svc/


Two main challenges: ingestion...



Two main challenges: ... and distribution



(and yeah, maybe scaling too! )



Making WebRTC ingestion easy: WISH / WHIP!

https://www.meetecho.com/blog/whip-janus/ (September 2020)

https://www.meetecho.com/blog/whip-janus/


Making WebRTC ingestion easy: WISH / WHIP!

https://www.meetecho.com/blog/whip-janus-part-ii/

https://www.meetecho.com/blog/whip-janus-part-ii/


There would be no WHIP without Dr. Alex r



A new Working Group in the IETF...

https://datatracker.ietf.org/wg/wish/about/

https://datatracker.ietf.org/wg/wish/about/


... and a new draft for the WHIP specification!

https://www.ietf.org/archive/id/draft-ietf-wish-whip-01.html

https://www.ietf.org/archive/id/draft-ietf-wish-whip-01.html


WebRTC-HTTP ingestion protocol (WHIP)

• HTTP-based signalling to create sendonly PeerConnections

• HTTP POST to send SDP offer, and get an SDP answer in the response

• Teardown of sessions using HTTP DELETE

• Authentication and authorization via Bearer tokens

• https://www.rfc-editor.org/rfc/rfc6750.html

• Trickle and ICE restart via HTTP PATCH and SDP fragments

• https://www.rfc-editor.org/rfc/rfc8840.html

• Everything else is your usual WebRTC!

• ICE, DTLS, etc.

https://www.rfc-editor.org/rfc/rfc6750.html
https://www.rfc-editor.org/rfc/rfc8840.html


WebRTC-HTTP ingestion protocol (WHIP)

• HTTP-based signalling to create sendonly PeerConnections

• HTTP POST to send SDP offer, and get an SDP answer in the response

• Teardown of sessions using HTTP DELETE

• Authentication and authorization via Bearer tokens

• https://www.rfc-editor.org/rfc/rfc6750.html

• Trickle and ICE restart via HTTP PATCH and SDP fragments

• https://www.rfc-editor.org/rfc/rfc8840.html

• Everything else is your usual WebRTC!

• ICE, DTLS, etc.

https://www.rfc-editor.org/rfc/rfc6750.html
https://www.rfc-editor.org/rfc/rfc8840.html


WebRTC-HTTP ingestion protocol (WHIP)

• HTTP-based signalling to create sendonly PeerConnections

• HTTP POST to send SDP offer, and get an SDP answer in the response

• Teardown of sessions using HTTP DELETE

• Authentication and authorization via Bearer tokens

• https://www.rfc-editor.org/rfc/rfc6750.html

• Trickle and ICE restart via HTTP PATCH and SDP fragments

• https://www.rfc-editor.org/rfc/rfc8840.html

• Everything else is your usual WebRTC!

• ICE, DTLS, etc.

https://www.rfc-editor.org/rfc/rfc6750.html
https://www.rfc-editor.org/rfc/rfc8840.html


WebRTC-HTTP ingestion protocol (WHIP)

• HTTP-based signalling to create sendonly PeerConnections

• HTTP POST to send SDP offer, and get an SDP answer in the response

• Teardown of sessions using HTTP DELETE

• Authentication and authorization via Bearer tokens

• https://www.rfc-editor.org/rfc/rfc6750.html

• Trickle and ICE restart via HTTP PATCH and SDP fragments

• https://www.rfc-editor.org/rfc/rfc8840.html

• Everything else is your usual WebRTC!

• ICE, DTLS, etc.

https://www.rfc-editor.org/rfc/rfc6750.html
https://www.rfc-editor.org/rfc/rfc8840.html


A few sequence diagrams



A few sequence diagrams



A few sequence diagrams



A WHIP server based on Janus

• Janus is a popular WebRTC server, so good option for WHIP
• It implements its own JSON-based API, though (Janus API)

• Simple (and transparent) solution: basic API translator in front of Janus
• WHIP API maps quite simply to set of Janus API primitives
• No need to change anything in the WebRTC stack

• Implemented simple prototype using node.js and Express
• REST server that implements the WHIP API, and talks to Janus accordingly
• Only takes care of ingest: distribution out of scope (e.g., via SOLEIL)

Simple WHIP Server
https://github.com/lminiero/simple-whip-server/

https://github.com/lminiero/simple-whip-server/


A WHIP server based on Janus

• Janus is a popular WebRTC server, so good option for WHIP
• It implements its own JSON-based API, though (Janus API)

• Simple (and transparent) solution: basic API translator in front of Janus
• WHIP API maps quite simply to set of Janus API primitives
• No need to change anything in the WebRTC stack

• Implemented simple prototype using node.js and Express
• REST server that implements the WHIP API, and talks to Janus accordingly
• Only takes care of ingest: distribution out of scope (e.g., via SOLEIL)

Simple WHIP Server
https://github.com/lminiero/simple-whip-server/

https://github.com/lminiero/simple-whip-server/


A WHIP server based on Janus

• Janus is a popular WebRTC server, so good option for WHIP
• It implements its own JSON-based API, though (Janus API)

• Simple (and transparent) solution: basic API translator in front of Janus
• WHIP API maps quite simply to set of Janus API primitives
• No need to change anything in the WebRTC stack

• Implemented simple prototype using node.js and Express
• REST server that implements the WHIP API, and talks to Janus accordingly
• Only takes care of ingest: distribution out of scope (e.g., via SOLEIL)

Simple WHIP Server
https://github.com/lminiero/simple-whip-server/

https://github.com/lminiero/simple-whip-server/


A WHIP server based on Janus

• Janus is a popular WebRTC server, so good option for WHIP
• It implements its own JSON-based API, though (Janus API)

• Simple (and transparent) solution: basic API translator in front of Janus
• WHIP API maps quite simply to set of Janus API primitives
• No need to change anything in the WebRTC stack

• Implemented simple prototype using node.js and Express
• REST server that implements the WHIP API, and talks to Janus accordingly
• Only takes care of ingest: distribution out of scope (e.g., via SOLEIL)

Simple WHIP Server
https://github.com/lminiero/simple-whip-server/

https://github.com/lminiero/simple-whip-server/


Mapping WHIP interactions to the Janus API



Mapping WHIP interactions to the Janus API



Mapping WHIP interactions to the Janus API



Mapping WHIP interactions to the Janus API



Mapping WHIP interactions to the Janus API



Simple WHIP Server in action



Basic UI to create/manage endpoints



Writing a WHIP client for testing

• Needs to support HTTP (WHIP API) and have a WebRTC stack
• Browsers are the obvious choice, but what about a native solution?
• Many broadcasters today use custom tools (e.g., OBS)

• Unfortunately OBS-WebRTC is not currently an option
• Used legacy WHIP API, and currently only supports Millicast ingestion

• Chose GStreamer’s webrtcbin2 for the purpose
• Used it already with success in other applications (e.g., JamRTC)
• Modular and very powerful, so easy to feed with external sources

Simple WHIP Client
https://github.com/lminiero/simple-whip-client/

2https://gstreamer.freedesktop.org/documentation/webrtc/

https://github.com/lminiero/simple-whip-client/
https://gstreamer.freedesktop.org/documentation/webrtc/


Writing a WHIP client for testing

• Needs to support HTTP (WHIP API) and have a WebRTC stack
• Browsers are the obvious choice, but what about a native solution?
• Many broadcasters today use custom tools (e.g., OBS)

• Unfortunately OBS-WebRTC is not currently an option
• Used legacy WHIP API, and currently only supports Millicast ingestion

• Chose GStreamer’s webrtcbin2 for the purpose
• Used it already with success in other applications (e.g., JamRTC)
• Modular and very powerful, so easy to feed with external sources

Simple WHIP Client
https://github.com/lminiero/simple-whip-client/

2https://gstreamer.freedesktop.org/documentation/webrtc/

https://github.com/lminiero/simple-whip-client/
https://gstreamer.freedesktop.org/documentation/webrtc/


Writing a WHIP client for testing

• Needs to support HTTP (WHIP API) and have a WebRTC stack
• Browsers are the obvious choice, but what about a native solution?
• Many broadcasters today use custom tools (e.g., OBS)

• Unfortunately OBS-WebRTC is not currently an option
• Used legacy WHIP API, and currently only supports Millicast ingestion

• Chose GStreamer’s webrtcbin2 for the purpose
• Used it already with success in other applications (e.g., JamRTC)
• Modular and very powerful, so easy to feed with external sources

Simple WHIP Client
https://github.com/lminiero/simple-whip-client/

2https://gstreamer.freedesktop.org/documentation/webrtc/

https://github.com/lminiero/simple-whip-client/
https://gstreamer.freedesktop.org/documentation/webrtc/


Writing a WHIP client for testing

• Needs to support HTTP (WHIP API) and have a WebRTC stack
• Browsers are the obvious choice, but what about a native solution?
• Many broadcasters today use custom tools (e.g., OBS)

• Unfortunately OBS-WebRTC is not currently an option
• Used legacy WHIP API, and currently only supports Millicast ingestion

• Chose GStreamer’s webrtcbin2 for the purpose
• Used it already with success in other applications (e.g., JamRTC)
• Modular and very powerful, so easy to feed with external sources

Simple WHIP Client
https://github.com/lminiero/simple-whip-client/

2https://gstreamer.freedesktop.org/documentation/webrtc/

https://github.com/lminiero/simple-whip-client/
https://gstreamer.freedesktop.org/documentation/webrtc/


Simple WHIP Client options

Usage:
whip-client [OPTION?] -- Simple WHIP client

Help Options:
-h, --help Show help options

Application Options:
-u, --url Address of the WHIP endpoint (required)
-t, --token Authentication Bearer token to use (optional)
-A, --audio GStreamer pipeline to use for audio (optional, required if audio-only)
-V, --video GStreamer pipeline to use for video (optional, required if video-only)
-n, --no-trickle Don‘t trickle candidates, but put them in the SDP offer (default: false)
-f, --follow-link Use the Link headers returned by the WHIP server to automatically configure STUN/TURN servers to

use (default: false)
-S, --stun-server STUN server to use, if any (stun://hostname:port)
-T, --turn-server TURN server to use, if any; can be called multiple times

(turn(s)://username:password@host:port?transport=[udp,tcp])
-F, --force-turn In case TURN servers are provided, force using a relay (default: false)
-l, --log-level Logging level (0=disable logging, 7=maximum log level; default: 4)



Simple WHIP Client example

./whip-client -u http://localhost:7080/whip/endpoint/abc123 \
-t verysecret \
-A "audiotestsrc is-live=true wave=red-noise ! audioconvert !

audioresample ! queue ! opusenc ! rtpopuspay pt=100 ! queue !
application/x-rtp,media=audio,encoding-name=OPUS,payload=100" \

-V "videotestsrc is-live=true pattern=ball ! videoconvert ! queue !
vp8enc deadline=1 ! rtpvp8pay pt=96 ! queue !
application/x-rtp,media=video,encoding-name=VP8,payload=96" \

-S stun.l.google.com:19302



WHIP client and server + Janus



Simple WHIP Client in action



Testing my WHIP client with Janus



Other WHIP implementations: servers

• Lorenzo Miniero – Simple WHIP Server (Janus)

• https://github.com/lminiero/simple-whip-server

• Juliusz Chroboczek – Galene

• https://github.com/jech/galene/tree/whip

• Sergio Garcia Murillo – Millicast integration

• https://millicast.com/

• Cameron Elliott – Deadsfu

• https://github.com/x186k/deadsfu

https://github.com/lminiero/simple-whip-server
https://github.com/jech/galene/tree/whip
https://millicast.com/
https://github.com/x186k/deadsfu


Other WHIP implementations: clients

• Lorenzo Miniero – Simple WHIP Client (GStreamer)
• https://github.com/lminiero/simple-whip-client

• Sergio Garcia Murillo – whip-js (JavaScript)
• https://github.com/medooze/whip-js/

• Gustavo Garcia – whip-go (Go)
• https://github.com/ggarber/whip-go/

• Tim Panton – whipi (Java / Raspberry Pi)
• https://github.com/pipe/whipi

• Alberto Gonzalez Trastoy – free-whip (Python)
• https://github.com/agonza1/free-whip/

• Cameron Elliott – whip-whap-js (JavaScript)
• https://github.com/x186k/whip-whap-js

https://github.com/lminiero/simple-whip-client
https://github.com/medooze/whip-js/
https://github.com/ggarber/whip-go/
https://github.com/pipe/whipi
https://github.com/agonza1/free-whip/
https://github.com/x186k/whip-whap-js


WHIP interop tests @ IETF 112 Hackathon!

https://github.com/IETF-Hackathon/ietf112-project-presentations/blob/main/ietf112-hackathon-whip.pdf

https://github.com/IETF-Hackathon/ietf112-project-presentations/blob/main/ietf112-hackathon-whip.pdf


WHIP interop tests @ IETF 112 Hackathon!

Simple WHIP Server Galene Millicast deadsfu
Simple WHIP Client

whip-js
whip-go

whipi
free-whip

whip-whap-js



Integration WHIP in broadcasting workflows

• Old version of OBS-WebRTC did have WHIP support

• Tested for my blog post from last year

• Implemented legacy WHIP API, and used libwebrtc

• No popular streamer tool supports WHIP yet, though

• WHIP will make it easy for the signalling part...

• ... but they’ll still need a working WebRTC stack

• Why not start with a more “loose” integration then?

• Keeping on using existing tools as they work today

• Somehow get them to work with my GStreamer-based WHIP client



Integration WHIP in broadcasting workflows

• Old version of OBS-WebRTC did have WHIP support

• Tested for my blog post from last year

• Implemented legacy WHIP API, and used libwebrtc

• No popular streamer tool supports WHIP yet, though

• WHIP will make it easy for the signalling part...

• ... but they’ll still need a working WebRTC stack

• Why not start with a more “loose” integration then?

• Keeping on using existing tools as they work today

• Somehow get them to work with my GStreamer-based WHIP client



Integration WHIP in broadcasting workflows

• Old version of OBS-WebRTC did have WHIP support

• Tested for my blog post from last year

• Implemented legacy WHIP API, and used libwebrtc

• No popular streamer tool supports WHIP yet, though

• WHIP will make it easy for the signalling part...

• ... but they’ll still need a working WebRTC stack

• Why not start with a more “loose” integration then?

• Keeping on using existing tools as they work today

• Somehow get them to work with my GStreamer-based WHIP client



Enter NDI!

https://www.meetecho.com/blog/webrtc-ndi/
https://www.meetecho.com/blog/webrtc-ndi-part-2/

https://www.meetecho.com/blog/webrtc-ndi/
https://www.meetecho.com/blog/webrtc-ndi-part-2/


What is NDI?

• Network Device Interface (NDI)
• Royalty-free software standard developed by NewTek
• https://www.ndi.tv/

• Live exchange of multimedia streams within the same LAN
• Multichannel and uncompressed media streams (high quality)
• mDNS used for service discovery

• Easy to use (and integrate) native SDK
• Available on Windows, Linux, MacOS, Android, etc.
• VLC team working on an alternative implementation

• Widely used in the broadcasters industry
• Natively supported by many devices and streamer tools

https://www.ndi.tv/


What is NDI?

• Network Device Interface (NDI)
• Royalty-free software standard developed by NewTek
• https://www.ndi.tv/

• Live exchange of multimedia streams within the same LAN
• Multichannel and uncompressed media streams (high quality)
• mDNS used for service discovery

• Easy to use (and integrate) native SDK
• Available on Windows, Linux, MacOS, Android, etc.
• VLC team working on an alternative implementation

• Widely used in the broadcasters industry
• Natively supported by many devices and streamer tools

https://www.ndi.tv/


What is NDI?

• Network Device Interface (NDI)
• Royalty-free software standard developed by NewTek
• https://www.ndi.tv/

• Live exchange of multimedia streams within the same LAN
• Multichannel and uncompressed media streams (high quality)
• mDNS used for service discovery

• Easy to use (and integrate) native SDK
• Available on Windows, Linux, MacOS, Android, etc.
• VLC team working on an alternative implementation

• Widely used in the broadcasters industry
• Natively supported by many devices and streamer tools

https://www.ndi.tv/


What is NDI?

• Network Device Interface (NDI)
• Royalty-free software standard developed by NewTek
• https://www.ndi.tv/

• Live exchange of multimedia streams within the same LAN
• Multichannel and uncompressed media streams (high quality)
• mDNS used for service discovery

• Easy to use (and integrate) native SDK
• Available on Windows, Linux, MacOS, Android, etc.
• VLC team working on an alternative implementation

• Widely used in the broadcasters industry
• Natively supported by many devices and streamer tools

https://www.ndi.tv/


We’ve talked about WebRTC-to-NDI before...



What about NDI-to-WebRTC, though?

• There’s a cool NDI plugin for GStreamer

• Makes it easy to use NDI sources in GStreamer pipelines

• https://github.com/teltek/gst-plugin-ndi

• Hey, our WHIP client is based on GStreamer too!

• Audio and video pipelines are customizable (command line)

• NDI plugin as source for the media −→ encoders/WebRTC will do the rest

• Of course, we need something that generates NDI

• OBS has an NDI plugin, for NDI input and output

• https://github.com/Palakis/obs-ndi

https://github.com/teltek/gst-plugin-ndi
https://github.com/Palakis/obs-ndi


What about NDI-to-WebRTC, though?

• There’s a cool NDI plugin for GStreamer

• Makes it easy to use NDI sources in GStreamer pipelines

• https://github.com/teltek/gst-plugin-ndi

• Hey, our WHIP client is based on GStreamer too!

• Audio and video pipelines are customizable (command line)

• NDI plugin as source for the media −→ encoders/WebRTC will do the rest

• Of course, we need something that generates NDI

• OBS has an NDI plugin, for NDI input and output

• https://github.com/Palakis/obs-ndi

https://github.com/teltek/gst-plugin-ndi
https://github.com/Palakis/obs-ndi


What about NDI-to-WebRTC, though?

• There’s a cool NDI plugin for GStreamer

• Makes it easy to use NDI sources in GStreamer pipelines

• https://github.com/teltek/gst-plugin-ndi

• Hey, our WHIP client is based on GStreamer too!

• Audio and video pipelines are customizable (command line)

• NDI plugin as source for the media −→ encoders/WebRTC will do the rest

• Of course, we need something that generates NDI

• OBS has an NDI plugin, for NDI input and output

• https://github.com/Palakis/obs-ndi

https://github.com/teltek/gst-plugin-ndi
https://github.com/Palakis/obs-ndi


1. Configure NDI output in OBS



2. Create your scenes in OBS



3. Setup the WHIP client to capture NDI



Ready for our demo!



Ready for our demo!



Ready for our demo!



More details in a recent CommCon talk

https://2021.commcon.xyz/talks/whip-ndi-and-janus-genesis-of-a-broadcasting-demo

https://2021.commcon.xyz/talks/whip-ndi-and-janus-genesis-of-a-broadcasting-demo


Next step: broadcasting the stream

• WHIP server + Janus get you in a VideoRoom, and it’s a good starting point
• That’s the whole point of WebRTC ingest!
• Already “consumable” via VideoRoom itself (SFU)

• Janus VideoRoom plugin not really optimized for broadcasting, though
• Conceived for videoconferencing use cases
• Will not work well if you have to feed, e.g., 100’s or 1000’s

• Janus Streaming plugin a much better choice
• Natively optimized for doing one-to-many
• Can receive media from VideoRoom (and so WHIP) via “RTP forwarders”
• Even better, multiple Janus instances can work together



Next step: broadcasting the stream

• WHIP server + Janus get you in a VideoRoom, and it’s a good starting point
• That’s the whole point of WebRTC ingest!
• Already “consumable” via VideoRoom itself (SFU)

• Janus VideoRoom plugin not really optimized for broadcasting, though
• Conceived for videoconferencing use cases
• Will not work well if you have to feed, e.g., 100’s or 1000’s

• Janus Streaming plugin a much better choice
• Natively optimized for doing one-to-many
• Can receive media from VideoRoom (and so WHIP) via “RTP forwarders”
• Even better, multiple Janus instances can work together



Next step: broadcasting the stream

• WHIP server + Janus get you in a VideoRoom, and it’s a good starting point
• That’s the whole point of WebRTC ingest!
• Already “consumable” via VideoRoom itself (SFU)

• Janus VideoRoom plugin not really optimized for broadcasting, though
• Conceived for videoconferencing use cases
• Will not work well if you have to feed, e.g., 100’s or 1000’s

• Janus Streaming plugin a much better choice
• Natively optimized for doing one-to-many
• Can receive media from VideoRoom (and so WHIP) via “RTP forwarders”
• Even better, multiple Janus instances can work together



Ph.D Thesis on WebRTC broadcasting (2015)



Using SOLEIL for the purpose

• “Streaming Of Large scale Events over Internet cLouds” (Ph.D Thesis)

• In a nutshell, tree-based distribution of WebRTC feeds

• Ingest and edges are WebRTC (Janus), everything in the middle just RTP

• Working with RTP in intermediate layers has many advantages

• No WebRTC overhead, and easier to route/manipulate by non-WebRTC tools

• You can even take advantage of multicast, here

• Just needs RTP forwarding to start everything

• PR available in WHIP server to do RTP forwarding (merged)

• https://github.com/lminiero/simple-whip-server/pull/2

https://github.com/lminiero/simple-whip-server/pull/2


Using SOLEIL for the purpose

• “Streaming Of Large scale Events over Internet cLouds” (Ph.D Thesis)

• In a nutshell, tree-based distribution of WebRTC feeds

• Ingest and edges are WebRTC (Janus), everything in the middle just RTP

• Working with RTP in intermediate layers has many advantages

• No WebRTC overhead, and easier to route/manipulate by non-WebRTC tools

• You can even take advantage of multicast, here

• Just needs RTP forwarding to start everything

• PR available in WHIP server to do RTP forwarding (merged)

• https://github.com/lminiero/simple-whip-server/pull/2

https://github.com/lminiero/simple-whip-server/pull/2


Using SOLEIL for the purpose

• “Streaming Of Large scale Events over Internet cLouds” (Ph.D Thesis)

• In a nutshell, tree-based distribution of WebRTC feeds

• Ingest and edges are WebRTC (Janus), everything in the middle just RTP

• Working with RTP in intermediate layers has many advantages

• No WebRTC overhead, and easier to route/manipulate by non-WebRTC tools

• You can even take advantage of multicast, here

• Just needs RTP forwarding to start everything

• PR available in WHIP server to do RTP forwarding (merged)

• https://github.com/lminiero/simple-whip-server/pull/2

https://github.com/lminiero/simple-whip-server/pull/2


To learn more about RTP forwarders...

https://archive.fosdem.org/2020/schedule/event/janus/

https://archive.fosdem.org/2020/schedule/event/janus/


To learn more about RTP forwarders...

https://archive.fosdem.org/2020/schedule/event/janus/

https://archive.fosdem.org/2020/schedule/event/janus/


To learn more about RTP forwarders...

https://archive.fosdem.org/2020/schedule/event/janus/

https://archive.fosdem.org/2020/schedule/event/janus/


Distributing WHIP Janus streams via SOLEIL



Distributing WHIP Janus streams via SOLEIL



Distributing WHIP Janus streams via SOLEIL



Distributing WHIP Janus streams via SOLEIL



Distributing WHIP Janus streams via SOLEIL



Leveraging multicast internally for RTP



Leveraging multicast internally for RTP



Thanks! Questions? Comments?

Contacts
• https://twitter.com/elminiero
• https://twitter.com/meetecho
• https://www.meetecho.com

https://twitter.com/elminiero
https://twitter.com/meetecho
https://www.meetecho.com

