

On the Far Side of REST
An Architecture for a Future Internet

FOSDEM ‘22
Real Time Communications devroom

https://nlnet.nl/
https://ec.europa.eu/
https://www.ngi.eu/ngi-projects/ngi-zero/
https://www.isocfoundation.org/

Funding Topics

● NGI0 (NLNet; EC):
– Transport and lower-level protocols with focus on streaming

capabilities
● ISOC Foundation:

– Higher-level protocols; (mostly) the topic of this presentation

Organisational

● Public interest company (waiting for tax office)
● Why a “public interest company”?

– Lightweight, 1-person, limited liability company.
– “Public interest” defined (in Germany) as e.g. research, with the

provision that results must be made usable by the public (e.g. GPL).
– May write donation receipts.
– Can employ people (yaay!)
– Opens access to industrial R&D funds.

Organisational
● First (part-time) hire: Adrian Cochrane

– https://www.openwork.nz/ (Work)
– https://adrian.geek.nz/ (Personal/F(L)OSS)
– @alcinnz@floss.social (Fediverse)

● Help from Autonomic Co-Operative
– https://autonomic.zone/
– Specifically, Rebecca Bulboacă

● https://hazelnot.xyz/ (Portfolio)
● @hazelnot@sunbeam.city (Fediverse)

https://www.openwork.nz/
https://adrian.geek.nz/
https://autonomic.zone/
https://hazelnot.xyz/

Human Rights in the Digital Realm

Digital Human Rights

● Universal Declaration of Human Rights does not stop on the
Internet.

● European Commissions Next Generation Internet Initiative talks
about an Internet of Humans.

● Constant battle in e.g. weakening/strengthening encryption:
– Weaken: help prevent crime, help investigate it.
– Strengthen: help prevent crime, protect from abuse.
– Global Encryption Coalition: https://www.globalencryption.org/

https://www.globalencryption.org/

UDHR Examples (IANAL)
● Article 12: “No one shall be subjected to arbitrary interference with his

privacy, family, home or correspondence, (...)”
– Right to (end-to-end) encryption?

● Article 17.2: “No one shall be arbitrarily deprived of his property.”
– Removal of paid-for content from X-as-a-Service? (Definition of property matters!)

● Article 5: “No one shall be subjected to torture or to cruel, inhuman or
degrading treatment or punishment.”
– UX dark patterns such as cookie banners?
– Does this imply a right to accessibility?

Engineering Choices

● “No politics in X” always implicitly supports the status quo.
● The status quo includes e.g. surveillance capitalism, voter

manipulation, doxxing and death threats (also against FOSS
developers), racist/biased AI due to racist/biased training sets,
etc., etc.

● Do my choices help protect human rights? Do they hinder
them? Or do they (really) have no impact?

REST Architecture

REST
● Fielding, Roy Thomas. Architectural Styles and the Design

of Network-based Software Architectures. Doctoral dissertation,
University of California, Irvine, 2000.
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
– Paper compares different architectures, excellent read!

● IS NOT HTTP (but inspired by work on HTTP/1.1)
● IS NOT software, framework, CRUD-style use of HTTP methods, etc.

– RESTful has little to do with REST.
● IS a decentralized, scalable architecture.

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

REST Diagram

REST: Architectural Properties #1

● Performance:
– Network Performance: throughput, overhead
– User-Perceived Performance: latency, completion time
– Network Efficiency: best application performance is obtained by not

using the network
● Scalability: refers to the ability of the architecture to support

large numbers of components or interactions
● Simplicity

REST: Architectural Properties #2

● Modifiability:
– Evolvability: change implementation without affecting system
– Extensibility: add functionality safely
– Customizability: client-initiated server behaviour (e.g. content type)
– Reusability: of components

● Visibility: ability to monitor or mediate
● Portability: move code along with data (see later slides)
● Reliability: resilience to (partial) failure of components

REST evolution (in HTTP)

● Commercial interests, not user interests determine
innovation areas

● HTTP/2 effectively Google’s SPDY
● HTTP/3 effectively Google’s QUIC
● NO architectural changes
● NO security (added on via TLS)
● NO privacy (never on the radar)

REST (HTTP) Problems #1

● There are at least three different use-cases nowadays:
– “Document web”: the original use-case of providing documents for

public dissemination. Good fit.
– “API web”: treat “documents” as structured data in response to equally

structured data requests.
● Problem: REST (and HTTP) do not contain provisions for server-initiated

communications. Limited fit.
– “Streaming web”: media streaming (and other real-time applications)

may perform best over lossy medium, but HTTP requires loss
protection (REST ignores it). Bad fit.

REST (HTTP) Problems #2
● Authentication and authorization are (server) component defined

– Reduces reliability and modifiability
● Authorization implementations are often stateful

– Server statelessness is the “state transfer” in REST
– Statefulness reduces reliability and modifiability, and may reduce performance

● REpresentational nature makes (optional) code transfer mandatory:
– How else to implement a generic client for a server-defined protocol?
– Reduces portability by requiring fatter, more complex clients
– Eliminates decentralization: data + code under server control

REST (HTTP) Problems #3

● Separation of “client” and “server” roles does not make much
sense when synchronizing data between “client” devices.
– Does make sense from a “who provides and who uses service?”

perspective.
– Multiple devices:

● Do I “push” changes to other devices?
● Do other devices “pull” changes to themselves?
● Who coordinates what to push and/or pull?
● REST answer is to always require a centralized synchronization service.

Future Key Properties & Constraints
in support of Human Rights

Future Key Properties #2

● Authenticated and anonymous uses supported.
● Authorized and public uses supported.
● Private by default.
● Real-time (streaming) and on-demand uses supported.
● Bi-directional uses supported (“client” or “server” initiated)
● Reachability: shall not require data link/transport properties that

exclude device classes.
● Genericity: application logic, data formats and data transmission

must be separate concerns.

Additional/Modified Constraints #1

● Encrypted transport induces privacy and authenticated uses.
– Anonymous uses supported via authentication levels and client

control: “I know I’ve spoken to you before” vs. “I know where you live”
– Additional constraint on REST’s connectors.

● Distributed authorization induces authorized uses, optional
authorization induces public uses.
– Not covered by REST.

● Real-time/lossy capable transport induces real-time use cases.
– Additional constraint on REST’s connectors.

Additional/Modified Constraints #2

● Publish-subscribe support induces server-initiated
communications.
– Weakens REST’s client-server constraint.
– Weakens REST’s statelessness constraint.
– Introduces need for different “verbs” (methods) compared to HTTP.

● Cache constraint remains.
● Uniform interface remains (but see comment on verbs above).
● Layered system remains.

Additional/Modified Constraints #3

● Local first. APIs for applications must not expose resource
location (i.e. no URLs), just identification.
– Strengthens cache constraints and layering.
– Induces distribution; the most distributed system is one where every

node is completely independent of the rest of the system.
● Purposeful representation:

– “JSON” is serialization format, it says nothing about purpose.
– Requiring some purpose induces genericity via

(semi-)standardization.

Additional/Modified Constraints #4

● Decoupled code-on-demand:
– Code coupled to resource location induces centralization and data

lock-in.
– Code coupled to purposeful data format induces portability,

distribution, privacy and genericity.
● Data format transformations:

– Decouple applications from specific data formats:
● Design for e.g. audio/opus
● System can be extended with transformation from audio/opus to

audio/speex.
– Same as above, but stronger.

Client-Side Service

New Architecture (Simplified)

Application API

“Document Web”

“API Web”

“Real-Time Web”
Uniform Interface

On-Demand

Mixed

Publish/Subscribe

$

Layers “behind”/to the right of document/API/real-time as in REST.

Transformation

“Browser”

Interpeer Project(s)

Channeler

● NGI0 funded
● Session/transport protocol with multiplexed

channels with individual reliability
capabilities.
– Similar in some concepts to HTTP/3, but without

inheriting/considering HTTP semantics.
● Encryption (next; technically presentation

layer?).
● Network layer use requires routing (future).

Application

Presentation

Session

Transport

Network

Data Link

Physical

Currently unnamed

● NGI0 funded
● Proposed (not started) presentation layer

protocol with random-access and streaming
modes.

● Similarity to PPSPP (RFC 7574)
● However, capable of exploiting reliability

capabilities of channeler as best befits the
application use case.

● “An exercise in abstraction”

Application

Presentation

Session

Transport

Network

Data Link

Physical

Caprock

● ISOC funded
● Distributed authorization.

– Based on prior work by others: OCAP/ICAP/JWT/etc.
– Produce/consume tokens that:

● Are location independent (can be transmitted)
● Prove that a given action on a given object is permitted by the object’s

owner.
– Related AAA topics.
– Mostly learning from the past and reshuffling existing ideas.

● Recently started. Want to help?

Caprock (cont.)

● OCAP (object capabilities)
– Designed for local only inter-process communications authorization.
– J.B. Dennis, E.C. Van Horn. “Programming Semantics for

Multiprogrammed Computations.” Communications of the ACM,
9(3):143–155, March 1966

● ICAP (identity based capabilities)
– Designed for networked IPC authorization.
– Criticized for relying on centralized components & predates efficient

cryptography.
– Li Gong, “A Secure Identity-Based Capability System” Proceedings of

the 1989 IEEE Symposium on Security and Privacy, 1989

Caprock (cont.)

● JWT (JSON web tokens; RFC 7519):
– https://jwt.io/
– Compact token format for multiple purposes.
– OAuth+JWT (RFC 9068) for authentication, but centralized.

● Certificate PKIs face related issues:
– Protocol extensions in e.g. TLS (RFC 5280) to address these (in

centralized fashion).

https://jwt.io/

Wyrd

● ISOC funded
● Adrian, Jens
● “Treat documents as a series of changes”

– Simplest case: each change appends a BLOB
– Best case: conflict-free replicated data types (CRDTs)
– Feasible: git, etc?

● Intended to sit between presentation layer protocol and
application API.

Wyrd (cont.)

● HTTP has no concept of “this is the resource I want”.
– Has a concept of “the resource I want (probably) lives here”
– Has a variety of headers that together narrow down which

specific content is requested.
● BUT server can still send something else.

– See e.g.
https://developer.mozilla.org/en-US/docs/Web/HTTP/Caching

● Purpose of Wyrd is to provide a uniform interface with
significantly reduced complexity and efficient implementation.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Caching

Wyrd (cont.)

● Reduce complexity:
– Embrace that multiple versions of a resource may exist.
– Give explicit control over which version to use to application.

● Default e.g. to “latest”
– Stay out of the way of document formats.

● Efficient implementation:
– Must be aware of “change” boundaries in data stream for

mapping well onto I/O subsystem (network, cache).

Wyrd (cont.)

● Uniform interface:
– Either let the application handle file-like objects.
– Or let the application handle sequences of well-defined

content operations.
● Framework for different implementations of such content

operations
– Essentially a “content type for CRDT kind”.

Future

● Routing and discovery (partially NGI0 funded), e.g.
distributed hash table.
– Overlap with librecast project; will try to cooperate as much as

feasible: https://librecast.net/
● Data transformation framework: same general API as Wyrd, but

a layer on top.
– One of the most powerful use-cases has data transformation happen

server-side; good research topics here.
● A lot of glue between the pieces. Pareto principle applies.

https://librecast.net/

Contributing

How can I help?

● Ask in #interpeer on https://libera.chat/
● Look at open issues on https://gitlab.com/interpeer
● Donate:

– NLNet is a good place here in the EU
– ISOC foundation is a good place in US/worldwide
– Interpeer non-profit will be best, once up and running.

● Grants are fantastic for specific R&D topics.
● Grants do not cover bugfixing, administrative, IT/ops work well.

https://libera.chat/
https://gitlab.com/interpeer

Questions?

https://interpeer.io
jens@interpeer.io

https://reset.substack.com/

https://interpeer.io/
mailto:jens@interpeer.io
https://reset.substack.com/

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

It makes use of the works of Mateus Machado Luna.

