
GNU Radio 3.10
and other technical updates

FOSDEM 2022
Josh Morman, co-maintainer

jmorman@gnuradio.org
chat.gnuradio.org: @mormj

mailto:jmorman@gnuradio.org


GNU Radio 3.10

- Released Jan 14, 2022 → 3.10.0.1 ~Jan 24
- Packaging window for Ubuntu 22.04

- Much smaller 'irritation factor' 3.9-3.10 (than 3.7 or 3.8 to 3.9)
- API changes, but likely little OOT rework

- Two new Modules
- gr-pdu
- gr-iio

- Support for Hardware Accelerators
- Updated Logging Infrastructure
- 92 Unique Contributors since v3.9.0.0



Getting 3.10

● maint-3.10 branch of https://github.com/gnuradio/gnuradio
● Radio Conda

○ https://wiki.gnuradio.org/index.php/CondaInstall
● Ubuntu PPA (for 20.04)

○ sudo add-apt-repository ppa:gnuradio/gnuradio-releases
○ sudo apt-get update
○ sudo apt install gnuradio

● The goal is that for Ubuntu 22.04, should just be (thanks @mait)
○ sudo apt install gnuradio
○ Of course, Conda or the ppa will be better to get maintenance releases

● → Always looking for more help with packaging maintenance

NOTE: PPA doesn't play well with apt 
install other OOTs - install OOTs from 
source

https://github.com/gnuradio/gnuradio


gr-pdu

● PDUs (protocol data units) are the standard GNU Radio way for dealing with 
packetized data

○ Special PMT type with metadata and data
● Upstreamed from Sandia National Labs (Jacob Gilbert)

○ Tools for manipulation of PDU objects

https://www.youtube.com/watch?v=bT60hVVte48
https://www.youtube.com/watch?v=YPfkjWtIFXs

https://www.youtube.com/watch?v=bT60hVVte48
https://www.youtube.com/watch?v=YPfkjWtIFXs


gr-iio

● Upstreamed from Analog Devices
● IIO is an industry standard for interacting with a wide range of devices
● Source/Sinks for iio based devices

○ PLUTO SDR
○ FMCOMMS 2/3/4

https://www.youtube.com/watch?v=2gKbollW6wg

https://www.youtube.com/watch?v=2gKbollW6wg


Logging Infrastructure Overhaul

Revamped Logging Infrastructure (Marcus Müller)

spdlog replaces Log4Cpp - which had become an unwieldy dependency

● Persistently difficult dependency to maintain and use
● spdlog provides much nicer and more modern logging facilities
● libfmt for boost::format string formatting replacement

○ Instead of GR_LOG_DEBUG(d_logger, boost::format("logging value %d") % x)
○ … d_logger->debug("logging value {}", x)



gr_modtool OOT restructuring

● OOT structure more closely resembling the in-tree 
structure

● OLD:
○ import myoot
○ #include <myoot/myblock.h>

● NEW:
○ from gnuradio import myoot
○ #include <gnuradio/myoot/myblock.h>

● WHY?
○ We were being very presumptuous about package naming
○ Losing the association of an OOT with GNU Radio
○ Consistency

● OOTs created with 3.9 modtool (old structure) should 
be handled as normal with 3.10 modtool (the reverse 
is not true)

https://github.com/gnuradio/greps/blob/main/grep-0024-oots-same-as-modules.md

OOTs now installed same level 
as in-tree modules

https://github.com/gnuradio/greps/blob/main/grep-0024-oots-same-as-modules.md


Active Backporting

Thanks to the active backporting efforts of Jeff Long (co-maintainer), we are seeing 
many bug fixes and even large features show up in maintenance releases

https://github.com/gnuradio/gnuradio/blob/maint-3.9/CHANGELOG.md

● gr-soapy
○ provides access to Soapy hardware drivers using the SoapySDR driver framework
○ https://wiki.gnuradio.org/index.php/Soapy
○ "out of the box" (if SoapySDR installed) support for

■ rtl-sdr
■ hackrf
■ limesdr
■ bladeRF
■ SDRPlay
■ Airspy
■ …

3.9.5.0 and 3.8.5.0 available now!!!

https://github.com/gnuradio/gnuradio/blob/maint-3.9/CHANGELOG.md
https://wiki.gnuradio.org/index.php/Soapy


Custom Buffers

● Feature introduced by David Sorber at Black Lynx via the DARPA SDR 4.0 
project

○ Working Status presented last year at FOSDEM
○ https://archive.fosdem.org/2021/schedule/event/fsr_improving_gnu_radio_accelerator_device_dataflow/

● Device compatible buffer structure (single mapped)
○ https://wiki.gnuradio.org/index.php/Custom_Buffers

● Data able to remain in accelerator memory
○ Streamlined data movement

https://www.youtube.com/watch?v=VO1zMXowezg

Prior to 3.10 using custom buffers, each 
connection between CUDA enabled blocks 
would require ingress/egress to/from device 
memory (expensive)

https://archive.fosdem.org/2021/schedule/event/fsr_improving_gnu_radio_accelerator_device_dataflow/
https://wiki.gnuradio.org/index.php/Custom_Buffers
https://www.youtube.com/watch?v=VO1zMXowezg


Single vs Double Mapped Circular Buffers

● GNU Radio Double Mapped Buffers

● Contiguous read/write for the entire buffer size
● Simple pointer arithmetic

● Device (e.g. DMA) Memory - Single Mapped

● Readers/Writers need to handle wraparound
● Shuffle the data when necessary



CUDA Block Example 
Old way to write CUDA enabled GR blocks (pre 3.10)

Allocate CUDA Device memory in the constructor (or worse, 
in the work function if necessary) 

Copy from the GNU Radio buffers (input_items) to the 
device memory

constructor()

work()

Copy from the device memory back out to the GNU Radio 
buffers (output_items)

Execute kernel and check for errors



Custom Buffers Example 
NEW WAY to write CUDA enabled GR blocks in 3.10

Use the cuda_buffer class as part of the io_signature - the 
details of ingress/egress happen behind the scenes

constructor()

work()

Execute kernel and check for errors
(in and out pointers are already in device memory due to 
cuda_buffer)

For both old and new, we need to block on the stream used 
for this block 

https://github.com/gnuradio/gr-cuda
● Contains CUDA Buffer Class that can be 

re-used in your OOT
● Similar custom buffers available for AMD HIP 

(https://github.com/BlackLynx-Inc/gr-hip_buf
fer)

https://github.com/gnuradio/gr-cuda
https://github.com/BlackLynx-Inc/gr-hip_buffer
https://github.com/BlackLynx-Inc/gr-hip_buffer


Why is this Important?

● One of the value propositions of GNU Radio is the ability 
to accomplish a complex signal processing task by 
connecting a bunch of general purpose blocks together

● Don't always want to program a special purpose block, 
though this can be computationally efficient

● For accelerators, this paradigm means a lot of data 
movement in and out of devices unless handled properly

● GRC already has the concept of "domains" to represent 
ingress/egress - applied effectively to RFNoC



Profiling

No Custom Buffers Custom Buffers No Custom Buffers Custom Buffers



Accounting for CPU Time

● Compare GPU profile activity in the 
context of overall available CPU 
processing time (# of cores * flowgraph 
execution time)

● Much time is spent either idle - 
waiting for GPU operations to queue or 
complete, or synchronization and OS 
overhead

● Reducing the CPU overhead/idle can 
come through scheduler 
advancements → GR 4.0

No Custom Buffers

Custom Buffers

No Custom Buffers

Custom Buffers



Flowgraph Execution Time

No Custom Buffers

Custom Buffers Custom Buffers

No Custom Buffers

For small kernels, the gains from streamlined data transfer are huge → 90% reduction
Benefit diminishes the more GPU processing that is happening in a single block



Moving Forward

4.0
3.113.10

(maint)

New PMT
(flatbuffers)

C++ 
modernization

Modular 
Schedulers

Distributed 
Flowgraphs

Block Creation 
Workflow

GRC View 
Only Mode

More Boost 
Removal

gr-sigmf

minor irritation major disruption

TB
D

sigmf tag 
naming 

convergence

3.8

3.9

3.7



Getting Involved

If there are features you would like to see in GNU Radio, join the conversation

● chat.gnuradio.org (Matrix)
○ #gnuradio - general chat
○ #development 
○ #scheduler - discussion of 4.0 / future development

● Monthly Developer Calls
○ 3rd Thursday of Every Month at 12PM Eastern - twitch.tv/gnuradio

● Scheduler Working Group
○ A number of us get together every month or so to discuss more 

forward looking features and ideas - working towards GNU Radio 4.0
○ Meetings announce in #scheduler


