
How to effectively manage your feature flags in a monolithic Django application
Implementing and managing feature flags

Mehdi Raddadi, Senior Developer
mehdi.raddadi@gitguardian.com 06/02/2022www.gitguardian.com

GitGuardian

2

Tech

~1B public commits scanned/year
~2.5M secrets detected in 2021

#1 GitHub app for security
~1.3M repositories scanned

GitGuardian
In numbers

Inception

Founded in 2017
Automated secrets detection, in public and private

repositories

1 2 3 4

Some of our clients

Growth

62 employees
37 R&D

$44M raised in December 2021

3

GitGuardian
Products

Public Monitoring

Auto-discover who your developers are on GitHub
Monitor under-the-radar activity

Be alerted in real-time

Internal Monitoring

Monitor your repositories
Detect secret leaks

Be alerted in real-time
Integrate remediation to your workflow

4

Basics

5

Basics
Feature Flag definition

Feature

Feature

Feature

User

User

6

Basics
Usages

Usages

A/B testing

Settings Development

7

First implementations

8

On the fly

Settings|preferences can be updated with the admin or an
endpoint.

User

Possible but all the logic would need to be coded.

Database

Migrations are needed for every new feature flag.

First Implementations
Django Solo

Code

9

On the fly

Settings|preferences can be updated with the admin or an
endpoint.

User

Possible but all the logic would need to be coded.

Database

No migrations needed.

First Implementations
Poor man example

Code

10

²

On the fly

Settings|preferences can be updated with the admin or an
endpoint.

User

Can be linked to the users.

Database

No migration needed.

First Implementations
Django Dynamic Preferences

Code

11

Be Production Ready!

12

Be production Ready!
Account Preferences

Code

PerInstancePreferenceModel—
● Set your preferences per User/Account
● Finer grained preferences

13

Be production Ready!
Improvements - Requests optimization

Local cache

Django Cache

Database

²

Requests

Less network requests.
Less database requests.

Faster

Local Cache is 10x faster than Redis.

Rewrite

Adapted most of the library methods.

14

Be production Ready!
Improvements - Hierarchy

Global Pref

Local cache

Django Cache

Database

²

Inheritance - Custom property

has_global_preference_fallback.

Rewrite

Adapted most of the library methods.

15

Dependency

Create a hierarchy with depends_on.

Be production Ready!

Models

 • Adapt models for fallback
 • Adapt managers for optimization
 • Nullable Preferences

Creation

 • Create Preference only when
necessary
 • No overflow of the database

Cache

 • Faster than DB
 • Local Cache

Hierarchy

 • Dependency between preferences
 • Fallback on the global when
necessary

Improvements

Database Requests

 • Adapt manager to decrease
requests

16

Remove feature flag Activate in Saas

Be production Ready!
Lifecycle

Start Feature Finish Feature

Expose to On PremNewsletter

17

careers@gitguardian.com

Contact us - We are hiring!

www.gitguardian.com

18

https://github.com/lazybird/django-solo/
https://django-dynamic-preferences.readthedocs.io/en/latest/

Links

www.gitguardian.com

19

https://github.com/lazybird/django-solo/
https://django-dynamic-preferences.readthedocs.io/en/latest/

