
2
0

2
2

P
ER

IS
K

O
P

Exception Monitoring at Scale

 2
0

2
2

P
ER

IS
K

O
P

2

About Us

Jorge Creixell
Platform Lead at SoundCloud

@jcreixell

Marc Tuduri
Senior Engineer at SoundCloud

@marctuduri

- Opinions are our own -

2
0

2
2

P
ER

IS
K

O
P

Why Monitor Errors?

 2
0

2
2

P
ER

IS
K

O
P

4

Why Monitor Errors?

Metrics and Alerting

Quantitative, allow to determine whether a system
operates within acceptable thresholds.

Error Monitoring

Qualitative, specialized indexing and aggregation of
errors for gaining insights into the source of a problem
(request context, backtraces, etc). Useful during
investigations and incident response.

Logging

General purpose audit trail of events of interest.

2
0

2
2

P
ER

IS
K

O
P

Our Journey

 2
0

2
2

P
ER

IS
K

O
P

6

Early Days: Monolithic Architecture

 2
0

2
2

P
ER

IS
K

O
P

7

Early Days: Monolithic Architecture

 2
0

2
2

P
ER

IS
K

O
P

8

Micro-Service Architecture

 2
0

2
2

P
ER

IS
K

O
P

9

Micro-Service Architecture

 2
0

2
2

P
ER

IS
K

O
P

10

Limitations

Thundering herd issues

A single bad deploy for a microservice
would create a spike of errors,
exhausting the entire quota for the
month.

Self hosted solutions would need to be
overprovisioned, be ready to auto-scale
very fast or subject to rate limits, risking
losing important signals.

Third-Party Vendor

Crossing internet boundaries, security
and sensitive data locality concerns.

 2
0

2
2

P
ER

IS
K

O
P

11

Early Alternatives

Log Ingestion and Indexing

Initially discarded due to massive
storage requirements.

Log Tailing

Extremely verbose logs, slow. Like finding a
needle in a needle in haystack.

Issues with log truncation/splitting and out of
order processing.

 2
0

2
2

P
ER

IS
K

O
P

12

TAKING A STEP BACK

 2
0

2
2

P
ER

IS
K

O
P

13

What Do We Really Need?

Requirements

● Complete Index of Errors
● Highly Scalable (traffic, instances,

clusters)
● Low resource consumption
● Cluster-Local (cloud native)
● Occurrence Sampling and Request

Context (reproducible errors)

Non-Requirements:

● Data durability
● Detailed metrics (already provided by

Prometheus)
● Client-Based Errors

2
0

2
2

P
ER

IS
K

O
P

Periskop

 2
0

2
2

P
ER

IS
K

O
P

15

Pull Based Model

Design

Client Library Aggregates and Samples
Errors in Memory

The collector builds a unique key with the
exception’s message and a hash of the
stack trace.

Periskop Server Scrapes and Further
Aggregates Errors Across Instances

Multiple levels of aggregation possible
(federation)

 2
0

2
2

P
ER

IS
K

O
P

16

Pull Based Model

Trade-Offs

+ Very Efficient Use of Resources

Sampling and aggregation provide a very
low memory footprint. I/O reduced to the
minimum.

+ Scales to Very Large Number of Errors
and Instantes

- Not Suitable for Short Lived Processes

Fork-based application servers, batch
jobs.

- Problematic for Crash-Looping
Processes

Panics, OOMs

- Less flexibility for Aggregation
Strategies

+ Decentralized

Hierarchical collection across multiple data
centers possible (federation).

2
0

2
2

P
ER

IS
K

O
P

Main Features

 2
0

2
2

P
ER

IS
K

O
P

18

Services and errors navigation

Periskop UI

 2
0

2
2

P
ER

IS
K

O
P

19

Error search and filtering

Periskop UI

 2
0

2
2

P
ER

IS
K

O
P

20

Mark errors as resolved

Periskop UI

 2
0

2
2

P
ER

IS
K

O
P

21

● Go

● Scala

● Python

● Ruby

Current client implementation of Periskop in the following languages

Client libraries

https://github.com/periskop-dev/periskop-go
https://github.com/periskop-dev/periskop-scala
https://github.com/periskop-dev/periskop-python
https://github.com/periskop-dev/periskop-ruby

 2
0

2
2

P
ER

IS
K

O
P

22

periskop-go

 2
0

2
2

P
ER

IS
K

O
P

23

periskop-python

 2
0

2
2

P
ER

IS
K

O
P

24

Same SD mechanism as Prometheus

Many types supported

Same Configuration Format

Prometheus Based

Plugable Service Discovery

 2
0

2
2

P
ER

IS
K

O
P

25

Using pushgateway service

Push capabilities

For the the cases of fork-based application
servers or batch jobs.

Use as sidecar container

2
0

2
2

P
ER

IS
K

O
P

Roadmap and Future

 2
0

2
2

P
ER

IS
K

O
P

27

Built-in federation (Hierarchical Collection)

Time Series Visualization

More Integrations (Backstage, Grafana?)

More Languages and Frameworks Supported

Labelling of Errors

Roadmap

2
0

2
2

P
ER

IS
K

O
P

Fun Facts

 2
0

2
2

P
ER

IS
K

O
P

29

Inspired by a Very Interesting Office Device

Periskop: The Name

 2
0

2
2

P
ER

IS
K

O
P

30

Early Contributors Exchanged Roles

Go Backend Initially built by Android and
iOS Engineers

Front-End in Typescript/React by Backend
Engineers

Usage of Self Allocated Time (SAT) (thanks
SoundCloud!)

Initial Goal: Solve an existing problem while learning something new

2
0

2
2

P
ER

IS
K

O
P

Conclusion

 2
0

2
2

P
ER

IS
K

O
P

32

Periskop is a FOSS exception monitoring system for the cloud

Pull based systems offer good scalability characteristics with some trade-offs

Focus on your needs, optimize your resources

Never stop building new things, learning and contributing

Key Takeaways

 2
0

2
2

P
ER

IS
K

O
P

33

https://periskop.io

Contribute

http://periskop.io

2
0

2
2

P
ER

IS
K

O
P

THANK YOU

