
FOSDEM 2022

Running an OpenThread Mesh Network
with Linux and Zephyr

Stefan Schmidt <stefan.schmidt@huawei.com>
Principal Solutions Architect, Huawei OSTC

mailto:stefan.schmidt@huawei.com

Agenda

2

● Motivation
● Blueprint and integration work
● Technical background

● OpenThread border router on Linux
● Mesh node on Zephyr

● Building with Yocto
● Onboarding process
● Future work & Summary

Motivation

3

● Mesh to ensure good coverage and redundancy
● Power usage small enough to run on coin cell battery
● IPv6 end-to-end connectivity
● Internet-enabled microcontroller

Source: https://openthread.io/

OpenThread Project

4

● Open source (BSD-3) project implementing the Thread network protocol
● Thread specification version 1.1.1 available for everyone
● New versions for Thread group members first
● Active project and community
● Versatile code base that can run on bare-metal, RTOSes and Linux
● https://openthread.io/

● Build to re-use existing IEEE 802.15.4 silicon/transceivers
● Build on existing 6lowpan technology (see appendix)
● Filling the gaps to make it a turnkey solution

https://openthread.io/

IoT Gateway Blueprint

5

● Oniro blueprint to design an IoT Gateway with modern technology
● Aiming for 70% work done towards a real product
● Off the shelf components, hardware BoM and documentation

Gateway:
● Raspberry Pi 4B board (>=2GB RAM)
● Raspberry Pi USB-C Power supply
● microSD card (>=8GB size)
● Makerdiary nrf52840 MDK USB dongle

Mesh node:
● Arduino Nano 33 BLE
● Nordic Semiconductor nRF52840 ARM Cortex-M4 @ 64 Mhz
● 1MB flash memory / 256 KB SRAM
● Bluetooth and Thread compatible radio

● Android mobile phone to run onboarding application

Integration Work

6

● Yocto/OpenEmbedded recipes (ot-br-posix, ot-daemon, wpantund, etc)
● Meta-oniro-staging layer

https://booting.oniroproject.org/distro/oniro/-/tree/kirkstone-next/meta-oniro-staging/recipes-connectivity/openthread

● Systemd units for services
● Script for default configuration settings
● Meta-oniro-blueprints layer

https://booting.oniroproject.org/distro/meta-oniro-blueprints/-/tree/dunfell/recipes-connectivity/openthread

● Upstream fixes for musl build problems
● Hardware enablement & Zephyr application
● Documentation
● Demonstration video

https://booting.oniroproject.org/distro/oniro/-/tree/kirkstone-next/meta-oniro-staging/recipes-connectivity/openthread
https://booting.oniroproject.org/distro/meta-oniro-blueprints/-/tree/dunfell/recipes-connectivity/openthread

OpenThread Border Router with Linux

7

● OpenThread border router as service on the gateway

● USB dongle as Thread radio

● Yocto recipe for ot-br-posix

● Systemd unit files

● Configuration script

● Forwarding enabled on interfaces

● WiFi AP to allow easy mobile phone onboarding

Interactive shell to explore OpenThread:

$ ot-ctl

Bring up a OpenThread border router

ot-ctl thread stop

ot-ctl ifconfig down

ot-ctl dataset clear

ot-ctl dataset init new

ot-ctl dataset panid 0x1357

ot-ctl dataset extpanid 11112222deadbeef

ot-ctl dataset networkname OniroThread

ot-ctl dataset channel 26

J01NME is the Commissioner Credential to be used in the Android app

J01NU5 is the Joiner Credential, set in the node and QR code

ot-ctl dataset pskc $(pskc J01NME 11112222deadbeef OniroThread)

ot-ctl dataset commit active

ot-ctl ifconfig up

ot-ctl thread start

ot-ctl netdata register

OpenThread Mesh Node with Zephyr

8

● Pick a board with a well-supported SoC in Zephyr (nRF52840)
● Some hardware enablement (e.g. storage partition)
● USB serial console’s access

● System configuration from prj.conf in application
● Config options to auto join default network
● Empty business logic in main()

Interactive shell over USB serial:

$ screen /dev/ttyACM0 115200

uart:~$ ot

...

CONFIG_NET_L2_OPENTHREAD=y

CONFIG_OPENTHREAD_DEBUG=y

CONFIG_OPENTHREAD_L2_DEBUG=y

CONFIG_OPENTHREAD_L2_LOG_LEVEL_INF=y

Default values used on OTBR

PAN ID 0x1357 to decimal 4951

CONFIG_OPENTHREAD_PANID=4951

CONFIG_OPENTHREAD_CHANNEL=26

CONFIG_OPENTHREAD_NETWORK_NAME="OniroThread"

CONFIG_OPENTHREAD_XPANID="0x11112222deadbeef"

CONFIG_OPENTHREAD_JOINER=y

CONFIG_OPENTHREAD_JOINER_AUTOSTART=y

CONFIG_OPENTHREAD_JOINER_PSKD="J01NU5"

CONFIG_OPENTHREAD_SLAAC=y

Building with Yocto

9

$ mkdir oniroproject; cd oniroproject

$ repo init -u https://booting.oniroproject.org/distro/oniro

$ repo sync -–no-clone-bundle

Linux Border Router:

$ TEMPLATECONF=../oniro/flavours/linux . ./oe-core/oe-init-build-env build-oniro-linux

$ DISTRO="oniro-linux-blueprint-gateway" MACHINE=raspberrypi4-64 bitbake blueprint-gateway-image

Zephyr Mesh Node:

$ TEMPLATECONF=../oniro/flavours/zephyr . ./oe-core/oe-init-build-env build-oniro-zephyr

$ DISTRO="oniro-zephyr-blueprint-gateway" MACHINE=arduino-nano-33-ble bitbake zephyr-blueprint-gateway-node

https://booting.oniroproject.org/distro/oniro

Onboarding

10

● Generate QR code for node onboarding

v=1&&eui=00124b001ca77eef&&cc=J01NU5
● Thread 1.1 Commissioning App on Android
● Camera view to scan the generated QR code for

the mesh node
● Start Arduino Nano 33 BLE

to finish the onboarding process

Future Work

11

● Updating to later OpenThread version and catchup on changes
● Matter protocol integration as a modern IoT connectivity standard
● Flesh out the whole IPv6 connectivity story for the blueprint
● Use an Arduino Nano as Thread radio for border router
● Think about a native Linux-wpan platform for the OpenThread Border Router
● Simpler workflow to build and flash firmware for border router radio

Summary

12

● Turnkey blueprint for sensors on a wireless link with a small power budget
● Gateway as well as mesh node cases covered
● All open source and ready to be hacked on
● Start building your own software on top of the provided transport layer

Demonstration Video Documentation

JOIN ONIRO PROJECT

Thank you!

oniroproject.org

12

14

Appendix

6lowpan in a nutshell

15

Encapsulation:
● The 6LoWPAN adaptation layer sits between data-link and original network layer
● IPv6 allows for a maximum packet size of 1280 bytes
● Impossible to handle in the 127 byte MTU of IEEE 802.15.4
● Therefore 6lowpan brings back a fragmentation scheme
● But fragmentation can still lead to bad performance in loosy networks, best to avoid

Header Compression:
● Removing information found elsewhere in the frame/packet
● Reduce size by giving up some flexibility
● A few iterations: HC1 & HC2, IPHC, NHC and GHC

Header Size Problem

16

● Worst-case scenario calculations
● Maximum frame size in IEEE 802.15.4: 127 byte
● Reduced by the max. frame header (25 byte): 102 byte
● Reduced by highest link-layer security (21 byte): 81 byte
● Reduced by standard IPv6 header (40 byte): 41 byte
● Reduced by standard UDP header (8 byte): 33 byte
● This leaves only 33 byte for actual payload
● The rest of the space is used by headers

Frame header (25) Llsec (21) IPv6 header (40) UDP Payload (33)

127 Byte

6lowpan Header Compression

17

● IP Header Compression (IPHC) is a core part of 6lowpan

● Defining some default values in IPv6 header
● E.g. version = 6, traffic class & flow-label = 0, hop-limit only well-known values (1, 64 or 255)
● Remove the payload length (available in 6lowpan fragment header or data-link header)

Biggest saving is re-usage of the L2 address for IPv6
● Eliding the IPv6 prefix (global known by network, link-local defined by compression)
● Using the EUI-64 L2 address

Header Size Solution

18

● Calculations with plain 6lowpan usage for optimal case
● IPv6 with link-local and UDP on top
● IPHC with NHC for UDP
● The 48 byte IPv6 + UDP header could in the best cases be reduced to 6 bytes
● Double initial payload

Frame header (25) Llsec (21) IPHC Payload (75)

127 Byte

Dispatch (1) LOWPAN_IPHC (1) LOWPAN_NHC (1) UDP Ports (1)UDP ports (1) UDP check-sum (2)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	JOIN ONIRO PROJECT
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

