
Frédéric Descamps
Community Manager
MySQL
February 2022

FOSDEM 2022 MySQL
Devroom
MySQL 8.0: Logical Backups,
Snapshots and PITR like a
rockstar

Copyright @ 2022 Oracle and/or its affiliates.

Who am I ?

about.me/lefred

2

Frédéric Descamps

Copyright @ 2022 Oracle and/or its affiliates.

@lefred

MySQL Evangelist

hacking MySQL since 3.21

devops believer

living in �

h�ps://lefred.be

3

https://lefred.be/

Copyright @ 2022 Oracle and/or its affiliates.

2022 best practices

se�ings

4

I assume that your system

is running MySQL 8.0.27 or later

uses only InnoDB

has binary logs enabled (required for PITR)

binary logs must use ROW format

uses GTID

Copyright @ 2022 Oracle and/or its affiliates.5

Copyright @ 2022 Oracle and/or its affiliates.

Point-in-Time Recovery

using the binary logs

6

Point-in-Time Recovery

This is the technique whereby an administrator can restore or recover a set of data to a
certain point usually in the past.

In MySQL, point-in-time recovery consists in restoring a dump of the data and then replay
the binary logs from and to a speci�c point.

This technique is used for:

�xing a problem

live migration

Copyright @ 2022 Oracle and/or its affiliates.7

Point-in-Time Recovery : how does it work ?

day 1

BACKUPS

Binlogs

day 2 day 3 day 4

.001

.002

.003 .004 .005 .006 .007 .008 .009 .010

Copyright @ 2022 Oracle and/or its affiliates.8

Point-in-Time Recovery : how does it work ?

day 1

BACKUPS

Binlogs

day 2

we want to recover
at this point !

day 3 day 4

.001

.002

.003 .004 .005 .006 .007 .008 .009 .010

Copyright @ 2022 Oracle and/or its affiliates.9

Point-in-Time Recovery : how does it work ?

day 1

BACKUPS

Binlogs

day 2

we want to recover
at this point !

day 3 day 4

.001

.002

.003 .004 .005 .006 .007 .008 .009 .010

1. we
restore the dump (of day3)

Copyright @ 2022 Oracle and/or its affiliates.10

Point-in-Time Recovery : how does it work ?

day 1

BACKUPS

Binlogs

day 2 day 3 day 4

.001

.002

.003 .004 .005 .006 .007 .008 .009 .010

1. we
restore the dump (of day3)

2.
 w
e
re
pl
ay
 t
he

 bi
nar

y l
ogs

(.008
)

Copyright @ 2022 Oracle and/or its affiliates.11

Point-in-Time Recovery : important concept

Usually after a backup is made and veri�ed, binary log �les are purged from the MySQL
server:

Copyright @ 2022 Oracle and/or its affiliates.12

Point-in-Time Recovery : important concept

Usually after a backup is made and veri�ed, binary log �les are purged from the MySQL
server:

Copyright @ 2022 Oracle and/or its affiliates.

day 1

BACKUPS

Binlogs

day 2 day 3 day 4

.001

.002

.003 .004 .005 .006 .007 .008 .009 .010

12

Point-in-Time Recovery : important concept

Usually after a backup is made and veri�ed, binary log �les are purged from the MySQL
server:

Copyright @ 2022 Oracle and/or its affiliates.

day 1

BACKUPS

Binlogs

day 2 day 3 day 4

.001

.002

.003 .004 .005 .006 .007 .008 .009 .010

day 1

BACKUPSrecoverable
points in time

Binlogs

day 2 day 3 day 4

.001

.002

.003 .004 .005 .006 .007 .008 .009 .010

}

12

Point-in-Time Recovery : important concept (2)

As you can see we can only recover to the exact time of the backups/dumps and do point-
in-time recovery only from the last one !

This is why it's recommended to also stream the binary logs somewhere else (another
server, a NAS, the cloud, ...).

This will allow to make a point-in-time recovery at any point back in time:

Copyright @ 2022 Oracle and/or its affiliates.13

Point-in-Time Recovery : important concept (2)

As you can see we can only recover to the exact time of the backups/dumps and do point-
in-time recovery only from the last one !

This is why it's recommended to also stream the binary logs somewhere else (another
server, a NAS, the cloud, ...).

This will allow to make a point-in-time recovery at any point back in time:

Copyright @ 2022 Oracle and/or its affiliates.

}day 1

BACKUPSrecoverable
points in time

Binlogs

day 2 day 3 day 4

.001

.002

.003 .004 .005

.001

.002

.003

.004

.005

.006 .007 .008 .009 .010

.006

.007

.008

.009

.010

bi
nl
og

 s
tr
ea
mi
ng

13

Point-in-Time Recovery for Fixing Something

Why should we perform point-in-time recovery ?

Copyright @ 2022 Oracle and/or its affiliates.14

Point-in-Time Recovery for Fixing Something

Why should we perform point-in-time recovery ?

a user made a mistake

we need to �nd back data from a certain point-in-time

we need to have an overview of the database at a certain time

Copyright @ 2022 Oracle and/or its affiliates.14

Point-in-Time Recovery for Live Migration

When we do large migration (to the cloud for example), the load time can take longer than
the binary log retention on the MySQL server that will be used as Replication Source.

Then, Point-in-time recovery technique will be used to sync the future replica to be elligible
for asynchronous replication.

Copyright @ 2022 Oracle and/or its affiliates.15

Point-in-Time Recovery for Live Migration

day 1

BACKUPS/DUMPS

Binlogs

day 2 day 3 day 4

.001

.002

.003 .004

.001

.002

.003

.004

bi
nl
og

 s
tr
ea
mi
ng

load started

Copyright @ 2022 Oracle and/or its affiliates.16

Point-in-Time Recovery for Live Migration

day 1

BACKUPS/DUMPS

Binlogs

day 2 day 3 day 4

bi
nl
og

 s
tr
ea
mi
ng

load finished

.001

.002

.003

.004

.005

.006

.007

.008

.009

.010

.001

.002

.003 .004 .005 .006 .007 .008 .009 .010

dataset: gtid in .003

Copyright @ 2022 Oracle and/or its affiliates.17

Point-in-Time Recovery for Live Migration

day 1

BACKUPS/DUMPS

Binlogs

day 2 day 3 day 4

bi
nl
og

 s
tr
ea
mi
ng

.001

.002

.003

.004

.005

.006

.007

.008

.009

.010

.001

.002

.003 .004 .005 .006 .007 .008 .009 .010

dataset: gtid in .003

re
pl
ay
 f
ro
m
.0
03

 t
o
.0
10

Copyright @ 2022 Oracle and/or its affiliates.18

Point-in-Time Recovery for Live Migration

day 1

BACKUPS/DUMPS

Binlogs

day 2 day 3 day 4

bi
nl
og

 s
tr
ea
mi
ng

.001

.002

.003

.004

.005

.006

.007

.008

.009

.010

.001

.002

.003 .004 .005 .006 .007 .008 .009 .010

dataset: gtid in .010

sta
rt r

epli
catio

n

Copyright @ 2022 Oracle and/or its affiliates.19

Copyright @ 2022 Oracle and/or its affiliates.

Backups

Physical, Logical, Snapshot, ...

20

Backups

For years, physical hot backups were recommended. With the increase in use of the cloud
for MySQL, logical backups are coming back to the forefront.

Copyright @ 2022 Oracle and/or its affiliates.21

Backups

For years, physical hot backups were recommended. With the increase in use of the cloud
for MySQL, logical backups are coming back to the forefront.

First with mysqldump... but as you may know, this tool is not optimal. Single-threaded to
dump and single-threaded to load the data.

Copyright @ 2022 Oracle and/or its affiliates.21

Backups

For years, physical hot backups were recommended. With the increase in use of the cloud
for MySQL, logical backups are coming back to the forefront.

First with mysqldump... but as you may know, this tool is not optimal. Single-threaded to
dump and single-threaded to load the data.

That's why, Oracle came up with MySQL Shell Dump & Load Utility !

Copyright @ 2022 Oracle and/or its affiliates.21

MySQL Shell Dump & Load Utility

introduced with MySQL 8.0.21

supports export of all or selected schema

supports local storage (could be a mount to S3) and OCI Object Storage natively

supports dump from 5.6 (since 8.0.26), 5.7 and 8.0

can "�x" your schema (force InnoDB, add an invisible primary key, ...)

dumps and loads in parallel

and more ...

Copyright @ 2022 Oracle and/or its affiliates.22

The environment

To illustrate the scenarios in this presentation, I use the following system:

Copyright @ 2022 Oracle and/or its affiliates.

Ampere compute instance (VM.Standard.A1.Flex, 4 OCPU, 24GB RAM)

MySQL Server 8.0.27

MySQL Shell 8.0.27

sysbench 1.0.20 (generating load and data)

a specify table to play: fosdem.t1

23

Sysbench

Copyright @ 2022 Oracle and/or its affiliates.24

Table t1

Copyright @ 2022 Oracle and/or its affiliates.25

Logical Dump

As we plan to use our logical dump as a backup (or at least as an initial dump), we won't
focus on a speci�c schema but dump the full instance using util.dumpInstance():

Copyright @ 2022 Oracle and/or its affiliates.26

Logical Dump

As we plan to use our logical dump as a backup (or at least as an initial dump), we won't
focus on a speci�c schema but dump the full instance using util.dumpInstance():

mysqlsh mysql://root@localhost -- util dump-instance backup-$(date +"%F")

Copyright @ 2022 Oracle and/or its affiliates.26

Logical Dump (2)

Copyright @ 2022 Oracle and/or its affiliates.27

The metadata of the
dump is a very
important �le called
@.json and it's
located in the dump's
directory:

Logical Dump (3) - metadata

Copyright @ 2022 Oracle and/or its affiliates.28

GTID - MySQL Shell Dump & Load Utility

We can see that our dump is consistent and that the last GTID part of it is:

"gtidExecuted": "b00098d0-72eb-11ec-b8d2-0200170c7057:1-129545",

Copyright @ 2022 Oracle and/or its affiliates.29

GTID - MySQL Shell Dump & Load Utility

We can see that our dump is consistent and that the last GTID part of it is:

"gtidExecuted": "b00098d0-72eb-11ec-b8d2-0200170c7057:1-129545",

On the MySQL Server, we can see that sysbench is still running and keeps generating
data:

 SQL > select @@gtid_executed;
+---+
| @@gtid_executed |
+---+
| b00098d0-72eb-11ec-b8d2-0200170c7057:1-296244 |
+---+

Copyright @ 2022 Oracle and/or its affiliates.29

Copyright @ 2022 Oracle and/or its affiliates.

Snapshots

physical hot dumps

30

Physical Hot Snapshots

There are multiple ways of doing Snapshots:

Hot Backups (MEB, Xtrabackup): plenty of features, can be complicated to operate

Filesystem snapshots: not always hot depending on the technique and the �lesystem
used.

MySQL CLONE

Copyright @ 2022 Oracle and/or its affiliates.31

CLONE

Clone, introduced in MySQL 8.0.17, permits cloning data locally or from a remote MySQL
server instance. Cloned data is a physical snapshot of data stored in InnoDB that includes
schemas, tables, tablespaces, and data dictionary metadata. The cloned data comprises a
fully functional data directory, which permits using clone for MySQL server provisioning.

Copyright @ 2022 Oracle and/or its affiliates.32

CLONE

Clone, introduced in MySQL 8.0.17, permits cloning data locally or from a remote MySQL
server instance. Cloned data is a physical snapshot of data stored in InnoDB that includes
schemas, tables, tablespaces, and data dictionary metadata. The cloned data comprises a
fully functional data directory, which permits using clone for MySQL server provisioning.

 SQL > clone local data directory '/tmp/snapshot';
Query OK, 0 rows affected (5.6741 sec)

Copyright @ 2022 Oracle and/or its affiliates.32

CLONE

Clone, introduced in MySQL 8.0.17, permits cloning data locally or from a remote MySQL
server instance. Cloned data is a physical snapshot of data stored in InnoDB that includes
schemas, tables, tablespaces, and data dictionary metadata. The cloned data comprises a
fully functional data directory, which permits using clone for MySQL server provisioning.

 SQL > clone local data directory '/tmp/snapshot';
Query OK, 0 rows affected (5.6741 sec)

That's it ! As simple as that !

Copyright @ 2022 Oracle and/or its affiliates.32

CLONE - GTID

The GTID of the snapshoted dataset can be found in performance_schema:

 SQL > select GTID_EXECUTED from clone_status;
+---+
| GTID_EXECUTED |
+---+
| b00098d0-72eb-11ec-b8d2-0200170c7057:1-581783 |
+---+

Copyright @ 2022 Oracle and/or its affiliates.33

Copyright @ 2022 Oracle and/or its affiliates.

Binary logs

all the data changes are stored

34

Binary Logs

The MySQL workload is wri�en in the binary log �les:

Copyright @ 2022 Oracle and/or its affiliates.35

Binary Logs

The MySQL workload is wri�en in the binary log �les:

Copyright @ 2022 Oracle and/or its affiliates.

 SQL > show binary logs;
+---------------+-----------+-----------+
| Log_name | File_size | Encrypted |
+---------------+-----------+-----------+
binlog.000001	582	No
binlog.000002	200	No
binlog.000003	200	No
binlog.000004	782809684	No
+---------------+-----------+-----------+
4 rows in set (0.0059 sec)

[root@my-compute ~]# ls -lh /var/lib/mysql/binlog.*
-rw-r-----. 1 mysql mysql 582 Jan 11 14:36 /var/lib/mysql/binlog.000001
-rw-r-----. 1 mysql mysql 200 Jan 11 14:36 /var/lib/mysql/binlog.000002
-rw-r-----. 1 mysql mysql 200 Jan 11 14:36 /var/lib/mysql/binlog.000003
-rw-r-----. 1 mysql mysql 758M Jan 11 16:08 /var/lib/mysql/binlog.000004
-rw-r-----. 1 mysql mysql 64 Jan 11 14:36 /var/lib/mysql/binlog.index

let's divide the max size by 10 to have more logs to test
 SQL > set persist max_binlog_size=107374182;

35

.001

.002

.003

.004

.005

.006

.007

.008

.009

.010

bi
nl
og

 s
tr
ea
mi
ng

mysqlbinlog has the possibility of reading the binary logs from

a live server and store them to disk using the options --raw --

read-from-remote-server.

we create a script to use mysqlbinlog :

binlog_to_local.sh

we use systemd to start and stop our script

sources: h�ps://tinyurl.com/binlogstream

Keeping binlogs safe

Copyright @ 2022 Oracle and/or its affiliates.36

https://tinyurl.com/binlogstream

Keeping binlogs safe (2)

We �rst need to create a dedicated user for our streaming process:

SQL> CREATE USER 'binlog_streamer' IDENTIFIED BY 'C0mpl1c4t3d!Passw0rd' REQUIRE SSL;
SQL> GRANT REPLICATION SLAVE ON *.* TO 'binlog_streamer';
SQL> GRANT SELECT ON performance_schema.�le_instances TO 'binlog_streamer';

Copyright @ 2022 Oracle and/or its affiliates.37

Keeping binlogs safe (2)

We �rst need to create a dedicated user for our streaming process:

SQL> CREATE USER 'binlog_streamer' IDENTIFIED BY 'C0mpl1c4t3d!Passw0rd' REQUIRE SSL;
SQL> GRANT REPLICATION SLAVE ON *.* TO 'binlog_streamer';
SQL> GRANT SELECT ON performance_schema.�le_instances TO 'binlog_streamer';

And to avoid to store credentials in our script, let's use MySQL Con�g Editor :

$ mysql_con�g_editor set --login-path=localhost --host=127.0.0.1 \
 --user=binlog_streamer --password
Enter password:

Copyright @ 2022 Oracle and/or its affiliates.37

Keeping binlogs safe (3)

We can start the streaming using systemd:

Copyright @ 2022 Oracle and/or its affiliates.38

Keeping binlogs safe (4)

The �les are now also saved somewhere else (this can be another server of course):

Copyright @ 2022 Oracle and/or its affiliates.39

Copyright @ 2022 Oracle and/or its affiliates.

Point-in-Time Recovery

examples

40

Something we would like to avoid...

Copyright @ 2022 Oracle and/or its affiliates.41

Something we would like to avoid...

Copyright @ 2022 Oracle and/or its affiliates.41

Restore last dump

Start Replication

Configure replication Replay binlogs(*)

find the GTIDs of the
transactions we want

to bypass

set GTID_PURGED to
dump's GTID_EXECUTED

append the GTIDs
to GTID_PURGED

Do
we use
another
instance?

Yes No

The Action Plan

Copyright @ 2022 Oracle and/or its affiliates.42

Restore last dump

Start Replication

Configure replication Replay binlogs(*)

find the GTIDs of the
transactions we want

to bypass

set GTID_PURGED to
dump's GTID_EXECUTED

append the GTIDs
to GTID_PURGED

Do
we use
another
instance?

Yes No

The Action Plan

I chose to perform point-in-time recovery on
the same machine to show how we can
accelerate the process.

Copyright @ 2022 Oracle and/or its affiliates.42

Before we start

Some actions are necessary before we start the point-in-time recovery process:

if you plan to do point-in-time recovery on the same instance, you need to stop the

application (sysbench in our case)

we check the last GTID_EXECUTED

we do select count(*) on the sysbench tables just to have an estimation we
recovered as expected.

stop the binlog streaming process

Copyright @ 2022 Oracle and/or its affiliates.43

Before we start (2)
 SQL > select @@GTID_EXECUTED;
+--+
| @@GTID_EXECUTED |
+--+
| b00098d0-72eb-11ec-b8d2-0200170c7057:1-5854318 |
+--+

 SQL > select (select count(*) from sbtest.sbtest1) t1,
 ... ,
 (select count(*) from sbtest.sbtest8) t8;
+--------+--------+--------+--------+--------+--------+--------+--------+
| t1 | t2 | t3 | t4 | t5 | t6 | t7 | t8 |
+--------+--------+--------+--------+--------+--------+--------+--------+
| 667831 | 670327 | 669287 | 668361 | 668443 | 668736 | 670188 | 669557 |
+--------+--------+--------+--------+--------+--------+--------+--------+

$ sudo systemctl stop binlog_streaming@localhost.service

Copyright @ 2022 Oracle and/or its affiliates.44

Restore Last Dump

We have again serveral options:

restore the logical dump made with MySQL Shell

restore the snapshot made with CLONE.

Copyright @ 2022 Oracle and/or its affiliates.45

Restore Last Dump - MySQL Shell Utility

To restore a dump made with MySQL Shell Dump Utility, we need a MySQL server running.

We need to remove all non system schemas:

 SQL > drop schema fosdem;
Query OK, 1 row affected (0.0225 sec)

 SQL > drop schema sbtest;
Query OK, 8 rows affected (0.2117 sec)

Copyright @ 2022 Oracle and/or its affiliates.46

Restore Last Dump - MySQL Shell Utility (2)
$ mysqlsh mysql://root@localhost -- util load-dump backup-2022-01-11 \
 --showMetadata --skipBinlog

Loading DDL and Data from 'backup-2022-01-11' using 4 threads.
Opening dump...

Dump_metadata:
 Binlog_�le: binlog.000004
 Binlog_position: 302256358
 Executed_GTID_set: b00098d0-72eb-11ec-b8d2-0200170c7057:1-129545

Target is MySQL 8.0.27. Dump was produced from MySQL 8.0.27
Scanning metadata - done
...
chunks (400.00K rows, 76.71 MB) for 9 tables in 2 schemas
 were loaded in 7 sec (avg throughput 11.33 MB/s)
0 warnings were reported during the load.

Copyright @ 2022 Oracle and/or its affiliates.47

Restore Last Dump - MySQL Shell Utility (3)

We can already check if our table looks like what it was before the dump:

 SQL > select * from t1;
+----+----------+---------------------+---------+
| id | name | inserted | updated |
+----+----------+---------------------+---------+
1	dave	2022-01-11 15:01:27	NULL
2	miguel	2022-01-11 15:01:27	NULL
3	kenny	2022-01-11 15:01:27	NULL
4	joro	2022-01-11 15:01:27	NULL
5	johannes	2022-01-11 15:01:27	NULL
+----+----------+---------------------+---------+
5 rows in set (0.0005 sec)

Copyright @ 2022 Oracle and/or its affiliates.48

Restore Last Dump - MySQL Shell Utility (4)

We still need to set back the GTIDs:

 SQL > select @@gtid_purged, @@gtid_executed;
+---------------+--+
| @@gtid_purged | @@gtid_executed |
+---------------+--+
| | b00098d0-72eb-11ec-b8d2-0200170c7057:1-5854320 |
+---------------+--+

Copyright @ 2022 Oracle and/or its affiliates.49

Restore Last Dump - MySQL Shell Utility (4)

We still need to set back the GTIDs:

 SQL > select @@gtid_purged, @@gtid_executed;
+---------------+--+
| @@gtid_purged | @@gtid_executed |
+---------------+--+
| | b00098d0-72eb-11ec-b8d2-0200170c7057:1-5854320 |
+---------------+--+

 SQL > reset master;
 SQL > set global gtid_purged='b00098d0-72eb-11ec-b8d2-0200170c7057:1-129545';
 SQL > select @@gtid_purged, @@gtid_executed;
+---------------------------------+--------------------------------------+
| @@gtid_purged | @@gtid_executed |
+---------------------------------+--------------------------------------+
| b00098d0-72eb-11ec-...:1-129545 | b00098d0-72eb-11ec-b8d2-...:1-129545 |
+---------------------------------+--------------------------------------+

Copyright @ 2022 Oracle and/or its affiliates.49

Restore Last Dump - CLONE

As the plan is to retore the snapshot on the same server, we need �rst to save 2 imporant
�les from MySQL's data directory:

auto.cnf: containing the server-uuid

mysqld-auto.cnf: containing all con�guration changes done using SET PERSIST

additionnaly if you have your own dedicated keys in the datadir, you should also save
them

Copyright @ 2022 Oracle and/or its affiliates.50

Restore Last Dump - CLONE (2)

Let's starti by saving the required �les:

$ sudo cp /var/lib/mysql/auto.cnf snapshot
$ sudo cp /var/lib/mysql/mysqld-auto.cnf snapshot

Copyright @ 2022 Oracle and/or its affiliates.51

Restore Last Dump - CLONE (2)

Let's starti by saving the required �les:

$ sudo cp /var/lib/mysql/auto.cnf snapshot
$ sudo cp /var/lib/mysql/mysqld-auto.cnf snapshot

And now we stop MySQL and empty the datadir:

$ sudo systemctl stop mysqld
$ sudo rm -rf /var/lib/mysql/*

Copyright @ 2022 Oracle and/or its affiliates.51

Restore Last Dump - CLONE (2)

Let's starti by saving the required �les:

$ sudo cp /var/lib/mysql/auto.cnf snapshot
$ sudo cp /var/lib/mysql/mysqld-auto.cnf snapshot

And now we stop MySQL and empty the datadir:

$ sudo systemctl stop mysqld
$ sudo rm -rf /var/lib/mysql/*

Let's copy back the �les from the snapshot and start MySQL:

$ sudo cp -r snapshot/* /var/lib/mysql
$ sudo chown -R mysql. /var/lib/mysql
$ sudo systemctl start mysqld

Copyright @ 2022 Oracle and/or its affiliates.51

Restore Last Dump - CLONE (3)

We can see that the GTIDs are already in place:

 SQL > select @@gtid_purged, @@gtid_executed;
+--------------------------------------+--------------------------------------+
| @@gtid_purged | @@gtid_executed |
+--------------------------------------+--------------------------------------+
| b00098d0-72eb-11ec-b8d2-...:1-581783 | b00098d0-72eb-11ec-b8d2-...:1-581783 |
+--------------------------------------+--------------------------------------+

Copyright @ 2022 Oracle and/or its affiliates.52

Find the GTIDs to bypass

Now on the binary logs we have streamed, we need to �nd the transaction(s) we want to
skip.

We use mysqlbinlog -v --base64-output=DECODE-ROWS <binlog �le> with
grep to �nd the right �le. The timestamp on the �le can of course help to dentify the right
�le.

I found that the �le is my-compute-binlog.000029.

Copyright @ 2022 Oracle and/or its affiliates.53

Find the GTIDs to bypass

Now on the binary logs we have streamed, we need to �nd the transaction(s) we want to
skip.

We use mysqlbinlog -v --base64-output=DECODE-ROWS <binlog �le> with
grep to �nd the right �le. The timestamp on the �le can of course help to dentify the right
�le.

I found that the �le is my-compute-binlog.000029.

Copyright @ 2022 Oracle and/or its affiliates.53

Skip the GTIDs

It's time now to tell MySQL which GTIDs we want to avoid (only one in our example).

To do so, we will append to the GTID_PURGED the GTIDs we want to skip:

 SQL > SET @@GLOBAL.gtid_purged = '+b00098d0-72eb-11ec-b8d2-0200170c7057:4716073';
Query OK, 0 rows affected (0.0045 sec)

 SQL ฀ select @@gtid_purged, @@gtid_executed\G
 *************************** 1. row ***************************
 @@gtid_purged: b00098d0-72eb-11ec-b8d2-0200170c7057:1-581783:4716073
@@gtid_executed: b00098d0-72eb-11ec-b8d2-0200170c7057:1-581783:4716073

Copyright @ 2022 Oracle and/or its affiliates.54

Replay the Binary Logs

Now we could replay the binary logs one by one to our MySQL server... but that can lead to
a very long operation as mysqlbinlog is single-threaded.

Unfortunately, on a Cloud manage instance, this is the only feasible method:

$ mysqlbinlog my-compute-binlog.000002 | mysql

And repeat this for all binary logs...

Copyright @ 2022 Oracle and/or its affiliates.55

Replay the Binary Logs... like a Rockstar !

We will let believe to MySQL that those streamed binary logs are relay logs !

Therefore, MySQL will be able to ingest them in parallel very quickly !

Copyright @ 2022 Oracle and/or its affiliates.56

Replay the Binary Logs... like a Rockstar !

We will let believe to MySQL that those streamed binary logs are relay logs !

Therefore, MySQL will be able to ingest them in parallel very quickly !

 SQL > select @@relay_log;
+----------------------+
| @@relay_log |
+----------------------+
| my-compute-relay-bin |
+----------------------+

Copyright @ 2022 Oracle and/or its affiliates.56

Replay the Binary Logs... like a Rockstar ! (2)

Let's copy the �les:

$ cd /mnt/binlog_streaming/data
$ for i in `ls *`; do
 sudo cp $i /var/lib/mysql/my-compute-relay-bin.${i#*.}
 done
$ chown mysql. /var/lib/mysql/my-compute-relay-bin.*

And of course we need to create the relay index �le too:

$ cd /var/lib/mysql
$ sudo ls ./my-compute-relay-bin.* > my-compute-relay-bin.index
$ sudo chown mysql. my-compute-relay-bin.index

Copyright @ 2022 Oracle and/or its affiliates.57

Replay the Binary Logs... like a Rockstar ! (3)

Let's verify that we can ingest to relay logs in parallel:

 SQL > select @@replica_parallel_type, @@replica_parallel_workers;
+-------------------------+----------------------------+
| @@replica_parallel_type | @@replica_parallel_workers |
+-------------------------+----------------------------+
| LOGICAL_CLOCK | 4 |
+-------------------------+----------------------------+

This is enough on my system but don't hesitate to increase the threads if you have CPU
power.

If you can a�ord a MySQL restart before and after pitr, it might be good to set log_replica_updates to 0.

Copyright @ 2022 Oracle and/or its affiliates.58

Replay the Binary Logs... like a Rockstar ! (4)

And now... let's start !

 SQL > SET GLOBAL server_id = 99;
Query OK, 0 rows affected (0.0003 sec)

 SQL> SET GLOBAL binlog_transaction_dependency_tracking='writeset';
Query OK, 0 rows affected (0.0002 sec)

 SQL > CHANGE REPLICATION SOURCE
 TO RELAY_LOG_FILE='my-compute-relay-bin.000002',
 RELAY_LOG_POS=4, SOURCE_HOST='dummy';
Query OK, 0 rows affected (0.1464 sec)

 SQL > START REPLICA SQL_THREAD;
Query OK, 0 rows affected (0.0144 sec)

Copyright @ 2022 Oracle and/or its affiliates.59

Replay the Binary Logs... like a Rockstar ! (5)

You can verify the progress in performance_schema in tables
replication_applier_status_by_coordinator and
replication_applier_status_by_worker:

 SQL > SELECT LAST_APPLIED_TRANSACTION, APPLYING_TRANSACTION,
 APPLYING_TRANSACTION_ORIGINAL_COMMIT_TIMESTAMP
 FROM performance_schema.replication_applier_status_by_worker\G
 *************************** 1. row ***************************
 LAST_APPLIED_TRANSACTION: b00098d0-72eb-11ec-b8d2-0200170c7057:607684
 APPLYING_TRANSACTION: b00098d0-72eb-11ec-b8d2-0200170c7057:607685
APPLYING_TRANSACTION_ORIGINAL_COMMIT_TIMESTAMP: 2022-01-11 16:41:52.849261
 *************************** 2. row ***************************
 LAST_APPLIED_TRANSACTION: b00098d0-72eb-11ec-b8d2-0200170c7057:607369
 APPLYING_TRANSACTION:
...

Copyright @ 2022 Oracle and/or its affiliates.60

Test

Let's now verify...

 SQL > select @@gtid_purged, @@gtid_executed;
+--+----------------------------------+
| @@gtid_purged | @@gtid_executed |
+--+----------------------------------+
| b00098d0-72eb-11ec-...:1-581783:735903-5854318 | b00098d0-72eb-11ec-...:1-5854318 |
+--+----------------------------------+

Copyright @ 2022 Oracle and/or its affiliates.61

Test

Let's now verify...

 SQL > select @@gtid_purged, @@gtid_executed;
+--+----------------------------------+
| @@gtid_purged | @@gtid_executed |
+--+----------------------------------+
| b00098d0-72eb-11ec-...:1-581783:735903-5854318 | b00098d0-72eb-11ec-...:1-5854318 |
+--+----------------------------------+

 SQL > select (select count(*) from sbtest.sbtest1) t1,
 ... ,
 (select count(*) from sbtest.sbtest8) t8;
+--------+--------+--------+--------+--------+--------+--------+--------+
| t1 | t2 | t3 | t4 | t5 | t6 | t7 | t8 |
+--------+--------+--------+--------+--------+--------+--------+--------+
| 667831 | 670327 | 669287 | 668361 | 668443 | 668736 | 670188 | 669557 |
+--------+--------+--------+--------+--------+--------+--------+--------+

Copyright @ 2022 Oracle and/or its affiliates.61

Test (2)

And �nally:

 SQL > select * from fosdem.t1;
+----+----------+---------------------+---------+
| id | name | inserted | updated |
+----+----------+---------------------+---------+
1	dave	2022-01-11 15:01:27	NULL
2	miguel	2022-01-11 15:01:27	NULL
3	kenny	2022-01-11 15:01:27	NULL
4	joro	2022-01-11 15:01:27	NULL
5	johannes	2022-01-11 15:01:27	NULL
6	lefred	2022-01-12 15:44:08	NULL
+----+----------+---------------------+---------+
6 rows in set (0.0006 sec)

Don't forget to put back the initial value of server_id

Copyright @ 2022 Oracle and/or its affiliates.62

Copyright @ 2022 Oracle and/or its affiliates.

And in the cloud ?

Se�ing up your strategy in OCI

63

Strategy in OCI with MDS

VCN
10.0.0.0/16

Public Subnet
10.0.0.0/24

Private Subnet
10.0.1.0/24

MySQL Shell

MySQL
Database Service

Internet
Gateway

Oracle Cloud Infrastructure

Availability Domain 1

Fault Domain 1

mysql-dump-bucket

mysql-binlogs-bucket
Object Storage

dump instancestream binlogs

Copyright @ 2022 Oracle and/or its affiliates.64

Strategy in OCI with MDS (2)

Backups/snapshots are managed by the MySQL Team

Binary logs are purged every hour by default

You need to stream your Binary logs to Object Storage using a dedicated compute
instance

You can also perform logical dumps to Object Storage (not mandatory)

Copyright @ 2022 Oracle and/or its affiliates.65

Strategy in OCI with MDS (3)

More details:

h�ps://lefred.be/content/point-in-time-recovery-in-oci-mds-with-object-storage-part-
1/

h�ps://lefred.be/content/point-in-time-recovery-in-oci-mds-with-object-storage-part-
2/

Copyright @ 2022 Oracle and/or its affiliates.66

https://lefred.be/content/point-in-time-recovery-in-oci-mds-with-object-storage-part-1/
https://lefred.be/content/point-in-time-recovery-in-oci-mds-with-object-storage-part-2/

Questions ?

Copyright @ 2022 Oracle and/or its affiliates.67

