ORACLE

FOSDEM 2022 MySQL
Devroom

MySQL 8.0: Logical Backups,
Snapshots and PITR like a

rockstar
Frédéric Descamps 5
Community Manager o >l i
SQL o 3'“..5. »
February 2022 - - k W 3

Whoam1?

about.me/lefred

Fredéric Descamps

. @lefred

« MySOL Evangelist

« hacking MySQOL since 3.21
. devops believer

. living in 1B
. https://lefred.be

3 Copyright @ 2022 Oracle and/or its affiliates.

https://lefred.be/

2022 best practices

settings

| assume that your system

e IS running 8.0.27 or later

. uses only

. has binary logs enabled (required for PITR)
. binary logs must use ROW format

o uses GTID

5) Copyright @ 2022 Oracle and/or its affiliates.

Point-in-Time Recovery

using the binary logs

Point-in-Time Recovery

This Is the technique whereby an administrator can restore or recover a set of data to a
certain point usually in the past.

In , point-in-time recovery consists in restoring a dump of the data and then replay
the binary logs from and to a specific point.

This technique is used for:
. fixing a problem

. live migration

v Copyright @ 2022 Oracle and/or its affiliates.

Point-in-Time Recovery : how does it work ?

BACKUPS

(P l . | y 1 (P

day 1 day 4

Binlog
thtogs

.002

.001

Point-in-Time Recovery : how does it work ?

BACKUPS

we want to re&cover

p——
day 3

Binlog
thtogs

Point-in-Time Recovery : how does it work ?

BACKUPS

S

S

,. we restore the ay, Cor 4, \,
%‘-3/ \% A

S

we want to regover
at this point\!

.001

10 Copyright @ 2022 Oracle and/or its affiliates.

Binlogs

Point-in-Time Recovery : how does it work ?

Binlog
thtogs

.001

1 Copyright @ 2022 Oracle and/or its affiliates.

Point-in-Time Recovery : important concept

Usually after a backup is made , binary log files are purged from the
server:

D Copyright @ 2022 Oracle and/or its affiliates.

BACKUPS

=
sE-N

pa———

12 Copyright @ 2022 Oracle and/or its affiliates.

recoverable BACKUPS
@ points in time %

‘o™

S

\

12 Copyright @ 2022 Oracle and/or its affiliates.

Point-in-Time Recovery : important concept (2)

As you can see we can only recover to the exact time of the backups/dumps and do point-
in-time recovery only from the last one !

This is why it's recommended to also stream the binary logs somewhere else (another
server, a NAS, the cloud, ...).

This will allow to make a point-in-time recovery at any point back in time:

13 Copyright @ 2022 Oracle and/or its affiliates.

recoverable BACKUP S
@ points in time %

%

Binlogs

.nLog Streay,
bt Z’{Q

NN

13 Copyright @ 2022 Oracle and/or its affiliates.

Point-in-Time Recovery for Fixing Something

Why should we perform point-in-time recovery ?

Point-in-Time Recovery for Fixing Something
Why should we perform point-in-time recovery ?

« g user made a mistake

. we need to find back data from a certain point-in-time

« we need to have an overview of the database at a certain time

14 Copyright @ 2022 Oracle and/or its affiliates.

Point-in-Time Recovery for Live Migration

When we do large migration (to the cloud for example), the load time can take longer than
the binary log retention on the server that will be used as Replication Source.

Then, Point-in-time recovery technique will be used to sync the future replica to be élligible
for asynchronous replication.

15 Copyright @ 2022 Oracle and/or its affiliates.

Point-in-Time Recovery for Live Migration

BACKUPS/DUMPS

Binlogs

16 Copyright @ 2022 Oracle and/or its affiliates

Point-in-Time Recovery for Live Migration

BACKUPS/DUMPS o m
. B &

load finished dataset: gtid in .003

day 1

Binlogs

O

S
—1
 — |
—1
—1
—1

17 Copyright @ 2022 Oracle and/or its affiliates

Point-in-Time Recovery for Live Migration

BACKUPS/DUMPS Y:\E

dataset: gtid in .003

Binlogs

18 Copyright @ 2022 Oracle and/or its affiliates.

Point-in-Time Recovery for Live Migration

BACKUPS/DUMPS

Binlogs

19 Copyright @ 2022 Oracle and/or its affiliates

Backups

Physical, Logical, Snapshot, ...

20 Copyright @ 2022 Oracle and/or its affiliates.

Backups

For years, physical hot backups were recommended. With the increase in use of the cloud
for , logical backups are coming back to the forefront.

21 Copyright @ 2022 Oracle and/or its affiliates.

Backups

For years, physical hot backups were recommended. With the increase in use of the cloud
for , logical backups are coming back to the forefront.

First with mysqldump... but as you may know, this tool is not optimal. Single-threaded to
dump and single-threaded to load the data.

21 Copyright @ 2022 Oracle and/or its affiliates.

Backups

For years, physical hot backups were recommended. With the increase in use of the cloud
for , logical backups are coming back to the forefront.

First with mysqldump... but as you may know, this tool is not optimal. Single-threaded to
dump and single-threaded to load the data.

That's why, came up with Dump & Load Utility !

21 Copyright @ 2022 Oracle and/or its affiliates.

MySQL Shell Dump & Load Utility

« Introduced with 8.0.21

supports export of all or selected schema

supports local storage (could be a mount to S3) and OC/ Object Storage natively

supports dump from 5.6 (since 8.0.26), 5.7 and 8.0

can "fix" your schema (force InnoDB, add an invisible primary key, ...)

dumps and loads in parallel

and more ...

22 Copyright @ 2022 Oracle and/or its affiliates.

The environment

o illustrate the scenarios in this presentation, | use the following system:

- Ampere compute instance (VM.Standard.Al.Flex, 4 OCPU, 24GB RAM)
« MySQOL Server 8.0.27
« MySQOL Shell 8.0.27

. sysbench 1.0.20 (generating load and data)

. a specify table to play: fosdem. t1

23 Copyright @ 2022 Oracle and/or its affiliates.

[root@my-compute ~]# sysbench /usr/share/sysbench/oltp_read_write.lua --db-driver=mysql --mysql-host=localhost --table-size=50000
--tables=8 --mysql-user=root --rate=200 --report-interval=1 --events=0 --time=0 run

WARNING: Both event and time limits are disabled, running an endless test

sysbench 1.08.20 (using system LuaJIT 2.1.0-beta3)

Running the test with following options:

Number of threads: 1

Target transaction rate: 200/sec

Report intermediate results every 1 second(s)
Initializing random number generator from current time

Initializing worker threads...
Threads started!

thds: 1 tps: 114.52 gps: 2309.31 (r/w/o: 22/462.06/230. (ms,95%): 196.89 err/s: 0.00 reconn/s: 0.00
queue length: 58, concurrency: 1

thds: 1 tps: 116.01 gps: 2328.12 (r/w/o: 09/464.02/232. (ms,95%): 669.89 err/s: 0.00 reconn/s: 0.00
queue length: 141, concurrency: 1

thds: 1 tps: 120.00 gps: 2392.92 (r/w/o: 94/475.98/239. (ms,95%): 1069.86 err/s: 0.00 reconn/s: 0.00
queue length: 224, concurrency: 1

thds: 1 tps: 130.99 gps: 2626.88 (r/w/o: 92/527.98/261. (ms,95%): 1401.61 err/s: 0.00 reconn/s: 0.00
queue length: 304, concurrency: 1

thds: 1 tps: 118.00 gps: 2359.97 (r/w/o: 98/471.99/236. (ms,95%): 1869.60 err/s: 0.0@ reconn/s: 0.00
queue length: 388, concurrency: 1

thds: 1 tps: 113.01 gps: 2260.18 (r/w/o: 13/452.04/226. (ms,95%): 2362.72 err/s: 0.0@ reconn/s: 0.00
queue length: 475, concurrency: 1

thds: 1 tps: 126.99 gps: 2539.75 (r/w/o: 83/507.95/253. (ms,95%): 2680.11 err/s: 0.0@ reconn/s: 0.00
queue length: 553, concurrency: -1

thds: 1 tps: 126.01 gps: 2520.12 (r/w/o: 09/504.02/252. (ms,95%): 3095.38 err/s: 0.00 reconn/s: 0.00
queue length: 611, concurrency: -1

(£ R R]

0 v

“mw;mn unn v

w
{ S T T T T T T T I N O

1
1
2
2
3
3
4
4
5s
5
6
6
il
il
8
8

(4]

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
i

show create table t1\G
1. oW kkkkkkkkkkkkkkkkkkkkkkkkkkk
Table: t1
reate Table: CREATE TABLE ‘t1" (
1d int unsigned NOT NULL AUTO_INCREMENT,
name varchar(20) DEFAULT NULL,
inserted timestamp NULL DEFAULT CURRENT_TIMESTAMP,
updated timestamp NULL DEFAULT NULL ON UPDATE CURRENT_TIMESTAMP,
PRIMARY KEY (‘*id‘)
ENGINE=InnoDB AUTO_INCREMENT=6 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4 0900 ail _ci
row in set (0.0006 sec)

select * from t1;

| 2022-01-11
| miguel | 2022-01-11
| Renny | 2022-01-11
| joro | 2022-01-11
| johannes | 2022-01-11

rows in set (0.0004 sec)

Logical Dump

As we plan to use our logical dump as a backup (or at least as an initial dump), we won't
focus on a specific schema but dump the full instance using util.dumpInstance():

26 Copyright @ 2022 Oracle and/or its affiliates.

Logical Dump

As we plan to use our logical dump as a backup (or at least as an initial dump), we won't
focus on a specific schema but dump the full instance using util.dumpInstance():

mysqlsh mysql://root@localhost -- util dump-instance backup-$(date +"%F")

..................

........

26 Copyright @ 2022 Oracle and/or its affiliates.

[root@my-compute ~]# mysqlsh mysql://root@localhost -- util dump-instance backup-$(date +"%F")
Acquiring global read lock

Global read lock acquired

Initializing - done

Gathering information - done

All transactions have been started

Locking instance for backup

Global read lock has been released

Writing global DDL files

Writing users DDL

Running data dump using 4 threads.

NOTE: Progress information uses estimated values and may not be accurate.
Writing schema metadata - done

Writing DDL - done

Writing table metadata - done

Starting data dump

101% (400.00K rows / ~395.14K rows), 0.00 rows/s, 0.00 B/s uncompressed, 0.00 B/s compressed
Dump duration: 00:00:00s

Total duration: 00:00:00s

Schemas dumped: 2

Tables dumped: 9

Uncompressed data size: 76.71 MB

Compressed data size: 34.97 MB

Compression ratio: 2.2

Rows written: 400005

Bytes written: 34.97 MB

Average uncompressed throughput: 76.71 MB/s

Average compressed throughput: 34.97 MB/s

[root@my-compute ~]# cat backup-2022-81-11/@.json
{ Rt S
"dumper": "mysqlsh Ver 8.0.27 for Linux on aarché4 - for MySQL 8.0.27 (MySQL Community Server (GPL))",
"version": "2.0.1",
"origin": "dumpInstance",
"schemas": [
"fosdem",
"sbtest"
1,
"basenames": {
"fosdem": "fosdem",
"sbtest": "sbtest"
b,
"users": [
"’root’@’localhost’"
]

]
"defaultCharacterSet": "utf8mb4",
"tzUtc": true,
"bytesPerChunk": 64000000,
"user": "root",
"hostname": "my-compute",
"server": "my-compute",
"serverVersion": "8.0.27",
"binlogFile": "binlog.000004",
"binlogPosition": 302256358,
"etidExecuted”": "b00098da-72eb-11ec-b8d2-0200170c7057:1-129545",
"gtidExecutedInconsistent™: false,
"consistent": true,
compatibilityOptions”: [],
"capabilities": [],
"begin': "2022-081-11 15:23:06"

GTID- SOQL Dump & Load Utility

We can see that our dump is consistent and that the last GTID part of it is:

"gtidExecuted": "b@0@0B98d0-72eb-1lec-b8d2-0200178c7657:1-129545",

29 Copyright @ 2022 Oracle and/or its affiliates.

"gtidExecuted": "b@0@0898d0-72eb-11lec-b8d2-0200178c7657:1-129545",

SAL > select @@gtid _executed;

Snapshots

physical hot dumps

Physical Hot Snapshots

There are multiple ways of doing Snapshots:
« Hot Backups (MEB, Xtrabackup): plenty of features, can be complicated to operate

. Filesystem snapshots: not always hot depending on the technique and the filesystem
used.

. CLONE

31 Copyright @ 2022 Oracle and/or its affiliates.

CLONE

Clone, introduced in ~ SOL 8.0.17, permits cloning data locally or from a remote SOL
server instance. Cloned data is a physical snapshot of data stored in DB that includes
schemas, tables, tablespaces, and data dictionary metadata. The cloned data comprises a
fully functional data directory, which permits using clone for ~ SQOL server provisioning.

32 Copyright @ 2022 Oracle and/or its affiliates.

CLONE

Clone, introduced in ~ SOL 8.0.17, permits cloning data locally or from a remote SOL
server instance. Cloned data is a physical snapshot of data stored in DB that includes
schemas, tables, tablespaces, and data dictionary metadata. The cloned data comprises a

fully functional data directory, which permits using clone for ~ SOL server provisioning.

SAL > clone local data directory '/tmp/snapshot';
Query OK, @ rows affected (5.6741 sec)

32 Copyright @ 2022 Oracle and/or its affiliates.

CLONE

Clone, introduced in ~ SOL 8.0.17, permits cloning data locally or from a remote SOL
server instance. Cloned data is a physical snapshot of data stored in DB that includes
schemas, tables, tablespaces, and data dictionary metadata. The cloned data comprises a
fully functional data directory, which permits using clone for ~ SQOL server provisioning.

SAL > clone local data directory '/tmp/snapshot';
Query OK, @ rows affected (5.6741 sec)

That's it ! As simple as that !

32 Copyright @ 2022 Oracle and/or its affiliates.

SAL > select GTID_EXECUTED from clone_status;

Binary logs

all the data changes are stored

Binary Logs

The

35

SOL workload is written in the binary log files:

Copyright @ 2022 Oracle and/or its affiliates.

* sre® g 88
T Y

e ga
LT T T

sa s sssassnnguns Fann

oo,

SR Pakssr s RS S BB gurs s st ARl y

e L L L LR LR RN L X T L LN

e st simnwalne
*faseedave

Ssnsssnms

TR T T T TR

SEsB am ssseteTt aysara P B e e

Ba®r ans s a8 Tepbens
R IO T T Y

T R LT

LA AL R R TR e
ERIT R P TRy

Bes g 88 VT

Asae -

it sssewe

SAL > show binary logs;
e TP dmm - Fmmmmm - +
| Log_name | File_size | Encrypted |
e TP dmm - Fmmmmm - +
binlog.000001	582	No
binlog.000002	200	No
binlog.000003	200	No
binlog.00000L4	782809684	No

e ittt d-mm - - - +

L rows in set (0.8859 sec)

[root@my-compute ~]# 1s -1h /var/lib/mysql/binlog.*

-TW-I----- .1 mysql mysql 582 Jan 11 14:36 /var/1lib/mysql/binlog.000601
-TW-I----- . 1 mysql mysql 200 Jan 11 14:36 /var/1lib/mysql/binlog.0006062
-TW-I----- . 1 mysql mysql 200 Jan 11 14:36 /var/lib/mysql/binlog.006003
-TW-I----- .1 mysql mysql 758M Jan 11 16:88 /var/1lib/mysql/binlog.006004
-TW-I----- . 1 mysql mysql 64 Jan 11 14:36 /var/1lib/mysql/binlog.index

let's divide the max size by 1@ to have more logs to test
SAL > set persist max_binlog size=107374182;

Keeping binlogs safe

- mysqlbinlog has the possibility of reading the binary logs from
a live server and store them to disk using the options --raw --
read-from-remote-server.

« We create a script to usemysqlbinlog:
binlog to local.sh

. we use systemd to start and stop our script

sources: https.//tinyurl.com/binlogstream

36 Copyright @ 2022 Oracle and/or its affiliates.

https://tinyurl.com/binlogstream

SAL> CREATE USER 'binlog streamer' IDENTIFIED BY 'CBmpllc4t3d!Passwdrd' REQUIRE SSL;

SAL> GRANT REPLICATION SLAVE ON *.* TO 'binlog_streamer';
SAQL> GRANT SELECT ON performance_schema.file_instances TO 'binlog_streamer’;

SAL> CREATE USER 'binlog streamer' IDENTIFIED BY 'CBmpllc4t3d!Passwdrd' REQUIRE SSL;
SAL> GRANT REPLICATION SLAVE ON *.* TO 'binlog_streamer';
SAQL> GRANT SELECT ON performance_schema.file_instances TO 'binlog_streamer’;

S mysql_config editor set --login-path=localhost --host=127.6.0.1 \
--user=binlog_streamer --password

Enter password:

[root@my-compute binlog_streaming]# systemctl daemon-reload
[root@my-compute binlog_streaming]# systemctl start binlog_str'eami.ng
[root@my-compute binlog_streaming]# systemctl status binlog_streaming@localhost
binlog_streaming@localhost.service - Streaming MySQL binary logs to local filesystem using localhost
Loaded: loaded (/etc/systemd/system/binlog_streaming@.service; disabled; vendor preset: disabled)
Active: active (running) since Wed 2022-01-12 13:09:46 GMT; 4s ago
Main PID: 27188 (binlog_to_local)
CGroup: /system.slice/system-binlog_streaming.slice/binlog_streaming@localhost.service
27188 /bin/bash /root/binlog_streaming/bin/binlog_to_local.sh /root/binlog_streaming/conf/localhost.conf
27204 /bin/mysqlbinlog --login-path=1localhost --raw --result-file=my-compute- --read-from-remote-server

09:46 my-compute systemd[1]: Started Streaming MySQL binary logs to local filesystem using localhost.
09:46 my-compute binlog_to_local.sh[27188]: Streaming binary logs to /root/binlog_streaming/data
09:46 my-compute binlog_to_local.sh[27188]: MySQL Host Name is my-compute

09:46 my-compute binlog_to_local.sh[27188]: Backing up last binlog

09:46 my-compute binlog_to_local.sh[27188]: Starting live binlog streaming from binlog.000020

[root@my-compute binlog_streamingl#

total 2.8G

root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root

root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root

200

200
844M
103M
103M
103M
103M
103M
103M
103M
103M
103M
103M
103M
103M
103M
103M
103M
103M
103M
103M
103M

38M

NET
Jan
NE!
Jan
Jan
Jan
Jan
Jan
NET
Jan
NE!
Jan
Jan
Jan
Jan
Jan
NET
Jan
NE!
Jan
Jan
Jan
Jan

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

-lh data/

151
151
:52
:52
:52
:52
:52
:52
:52
:52
:52
:52
:52
:52
:52
:52
:52
:58
11
130

14

my-compute-binlog.
my-compute-binlog.
my-compute-binlog.
my-compute-binlog.
my-compute-binlog.
my-compute-binlog.
my-compute-binlog.
my-compute-binlog.
my-compute-binlog.
my-compute-binlog.
my-compute-binlog.
my-compute-binlog.
my-compute-binlog.
my-compute-binlog.
my-compute-binlog.
my-compute-binlog.
my-compute-binlog.
my-compute-binlog.
my-compute-binlog.
my-compute-binlog.
my-compute-binlog.
my-compute-binlog.
.000024

my-compute-binlog

000002
000003
000004
000005
000006
000007
000008
000003
000010
000011
000012
000013
000014
000015
000016
000017
000018
000019
000020
000021
000022
000023

Point-in-Time Recovery

examples

update t1 set name='dimo’; 212 no WHERE clause ?!?
Query OK, 5 rows affected (0.0040 sec)

Rows matched: 5 Changed: 5 Warnings: 0

insert into t1 (name) values (’lefred’);
Query OK, 1 row affected (0.0088 sec)

from t1;

2022-01-11 101: 2022-01-12 15:43:33
2022-01-11 101: 2022-01-12 15:43:39
2022-01-11 101: 2022-01-12 15:43:339
2022-01-11 101: 2022-01-12 15:43:339
2022-01-11 101: 2022-01-12 15:43:39
2022-01-12 144:

in set (0.0003 sec)

Something we would like to avoid...

ms ocalhost & fosdem 2022-01-12 15:42:57
SQL » update t1 set name='dimo’;

Query OK, 5 rows affected (0.0040 sec)

Rows matched: 5 Changed: 5 Warnings: 0

&% localhost & fosdem 20229071912 15:43:39
SQL » insert into t1 (name) values (’lefred’);

Query OK, 1 row affected (0.0088 sec)

: @ 1ocalhost | = fosdem 2022°01=12"15:44:08

SQL » select x from t1;

+—— e ——— et et +

| id | name | inserted | updated |

e ——— e e +

| 1 |[dimo | | 2022-01-11 15:01:27 | 2022-01-12 15:43:39 |

| 2 ||dimo | | 2022-01-11 15:01:27 | 2022-01-12 15:43:39 |

| 3 ||dimo | | 2022-01-11 15:01:27 | 2022-01-12 15:43:39 |

| 4 ||dimo | | 2022-01-11 15:01:27 | 2022-01-12 15:43:39 |

| 5 ||dimo | | 2022-01-11 15:01:27 | 2022-01-12 15:43:39 | e
| 6 | lefred | 2022-01-12 15:44:08 | NULL | e
P — N — N — + 0

6 rows in set (0.0003 sec)

41 Copyright @ 2022 Oracle and/or its affiliates.

The Action Plan

Restore last dump

set GTID_PURGED to
dump’s GTID_EXECUTED

find the GTIDs of the
transactions we want
to bypass

append the GTIDs
to GTID_PURGED

Configure replication Replay binlogs(*)

Start Replication

42 Copyright @ 2022 Oracle and/or its affiliates.

The Action Plan

Restore last dump

set GTID_PURGED to
dump’s GTID_EXECUTED

find the GTIDs of the
transactions we want
to bypass

append the GTIDs
to GTID_PURGED

Configure replication Replay binlogs(*)

Start Replication

42 Copyright @ 2022 Oracle and/or its affiliates.

| chose to perform point-in-time recovery on
the same machine to show how we can
accelerate the process.

Before we start

Some actions are necessary before we start the point-in-time recovery process:

if you plan to do point-in-time recovery on the same instance, you need to stop the

application (sysbench in our case)

we check the last GTID_EXECUTED

we do select count(*) onthe sysbench tables just to have an estimation we
recovered as expected.

stop the binlog streaming process

43 Copyright @ 2022 Oracle and/or its affiliates.

SAL > select @@GTID_EXECUTED,;

SQL > select (select count(*) from sbtest.sbtestl) t1,

(;éieét count(*) from sbtest.sbtest8) t8;

| 667831 | 6706327 | 669287 | 668361 | 668443 | 668736 | 670188 | 669557 |

dmm - dmm - e e dmm - d-m - R R +

S sudo systemctl stop binlog streaming@localhost.service

Restore Last Dump

We have again serveral options:
. restore the logical dump made with

. restore the snapshot made with CLONE.

45 Copyright @ 2022 Oracle and/or its affiliates.

SAQL > drop schema fosdem;
Query OK, 1 row affected (0.8225 sec)

SAL > drop schema sbtest;
Query OK, 8 rows affected (8.2117 sec)

S mysqlsh mysql://root@localhost -- util load-dump backup-20822-081-11 \
--showMetadata --skipBinlog

Loading DDL and Data from 'backup-2022-81-11' using &4 threads.
Opening dump...

Dump_metadata:
Binlog file: binlog.0800004
Binlog position: 362256358

Target 1s MySQL 8.@.27. Dump was produced from MySQL 8.0.27
Scanning metadata - done

chunks (488.08K rows, 76.71 MB) for 9 tables in 2 schemas
were loaded in 7 sec (avg throughput 11.33 MB/s)
@ warnings were reported during the load.

select * from tl;

2022-01-11
2022-01-11
2022-01-11
2022-01-11
2022-01-11

in set (0.80085 sec)

SAL > select @@gtid purged, @@gtid _executed;

Fomm - — - e +

| @@gtid purged | @@gtid _executed |

Fomm - — - e +

| | bo@098d0-72eb-11ec-b8d2-62060176c7057:1-5854320 |

Fomm - — - e +

SAL > select @@gtid purged, @@gtid _executed;

Fomm - — - e +

| @@gtid purged | @@gtid _executed |

Fomm - — - e +

| | bo@098d0-72eb-11ec-b8d2-62060176c7057:1-5854320 |

Fomm - — - e +

SAL > reset master;

SAL > set global gtid purged='b060098d0-72eb-11ec-b8d2-020017/0c70857:1-129545";
SAL > select @@Wgtid purged, @@gtid executed;

R e +

| @@gtid purged | @@gtid executed |

R e +

| b8@@38dB-72eb-11ec-...:1-129545 | bo@BIBAA-T72eb-11lec-bBd2-...:1-129545 |

R e +

Restore Last Dump - CLONE

As the plan Is to retore the snapshot on the same server, we need first to save 2 imporant
files from 'S data directory:

. auto.cnf: containing the server-uuid

- mysqgld-auto. cnf: containing all configuration changes done using SET PERSIST

. additionnaly if you have your own dedicated keys in the datadir, you should also save
them

50 Copyright @ 2022 Oracle and/or its affiliates.

Restore Last Dump - CLONE (2)

Let's starti by saving the required files:

S sudo cp /var/lib/mysqgl/auto.cnf snapshot
S sudo cp /var/lib/mysql/mysqld-auto.cnf snapshot

51 Copyright @ 2022 Oracle and/or its affiliates.

S sudo cp /var/lib/mysql/auto.cnf snapshot
S sudo cp /var/lib/mysql/mysqld-auto.cnf snapshot

S sudo systemctl stop mysqld
S sudo rm -rf /var/lib/mysql/*

S sudo cp /var/lib/mysql/auto.cnf snapshot
S sudo cp /var/lib/mysql/mysqld-auto.cnf snapshot

S sudo systemctl stop mysqld

S sudo rm -rf /var/lib/mysql/*

S sudo cp -r snapshot/* /var/lib/mysql
S sudo chown -R mysqgl. /var/lib/mysql
S sudo systemctl start mysqld

SAL > select @@gtid purged, @@gtid _executed;

e ittt e +

| @@gtid purged | @@gtid executed |

e ittt e +

| bo@098d0-T72eb-11lec-bBd2-...:1-581783 | b@@@9IBAA-72eb-1lec-b8d2-...:1-581783 |

e ittt e +

Find the GTIDs to bypass

Now on the binary logs we have streamed, we need to find the transaction(s) we want to
SKip.

We usemysqlbinlog -v --basebh-output=DECODE-ROWS <binlog file> with
grep to find the right file. The timestamp on the file can of course help to dentify the right

file.

| found that the file ismy-compute-binlog.8000829.

5 Copyright @ 2022 Oracle and/or its affiliates.

[root@my-compute datal]# mysqglbinlog -v --base64-output=DECODE-ROWS my-compute-binlog.000029 | grep fosdem -B 7
SET @@SESSION.GTID _NEXT= ‘b00098d0-72eb-11ec-b8d2-0200170c7057:4716073'/x1x/;
| # at 15455689
#220112 15:43:39 server id 123 end_log_pos 15455775 CRC32 0x391d6770 Query thread_1id=30 exec_time=0 error_code=0
SET TIMESTAMP=1642002213/%!%/;
BEGIN
[*x\x/;
| # at 15455775
#220112 15:43:39 server id 123 end_log_pos 15455837 CRC32 0x435b551c Table_map: * *.'t1" mapped to number 216
at 15455837
#220112 15:43:39 server id 123 end_log_pos 15456040 CRC32 0x9348e13f Update_rows: table id 216 flags: STMT_END_F
] ### UPDATE I o

~

@3=1641913287

@4=NULL
/ ### SET
@1=1

@2='dimo’

#i# @3=1641913287

A @4=1642002213 s o
UPDATE * A o -0

53 Copyright @ 2022 Oracle and/or its affiliates.

SAL > SET @@GLOBAL.gtid purged = '+b00@098d06-72eb-11ec-b8d2-06200170c7657:4716073";
Query OK, @ rows affected (06.0845 sec)

saL select @@gtid purged, @@gtid_executed\G

khkhkhkhkhkkhhkhkhkhkhhkhhkhkhkikikkkkkkk%k 1 Iow khkhkhkhkhkhhkhhkhkhkhkhhhhkikikikkkk***%

@@gtid_purged: b@BB98dO-72eb-11ec-bBd2-0200170c7057:1-581783:4716073
@@gtid_executed: b0@B98dB-72eb-11ec-b8d2-0200170c7057:1-581783:4716873

Replay the Binary Logs

Now we could replay the binary logs one by one to our ~ SQL server... but that can lead to
a very long operation as mysqglbinlog is single-threaded.

Unfortunately, on a Cloud manage instance, this is the only feasible method:
S mysqlbinlog my-compute-binlog.0000862 | mysql

And repeat this for all binary logs...

.......

55 Copyright @ 2022 Oracle and/or its affiliates.

Replay the Binary Logs... like a Rockstar !

We will et believe to that those streamed binary logs are relay logs !

Therefore, will be able to ingest them in parallel very quickly !

5 Copyright @ 2022 Oracle and/or its affiliates.

SAL > select @@relay log;

cd /mnt/binlog_streaming/data
for i in "ls * ; do
sudo cp $i /var/1lib/mysql/my-compute-relay-bin.S{i#*.}
done
chown mysql. /var/lib/mysql/my-compute-relay-bin.*

cd /var/lib/mysql
sudo 1s ./my-compute-relay-bin.* > my-compute-relay-bin.index
sudo chown mysql. my-compute-relay-bin.1index

Replay the Binary Logs... like a Rockstar ! (3)
Let's verify that we can ingest to relay logs in parallel:

SAL > select @@replica_parallel type, @@replica_parallel workers;

e T e -
| @@replica_parallel type | @@replica_parallel workers |
e T e -
| LOGICAL_CLOCK | 4|
e T e -

This is enough on my system but don't hesitate to increase the threads if you have CPU
power Y s o 2

srsmseSusnnsd

If you can afford a My restart before and after pitr, it might be good to set log_replica_updates tO 0. |

58 Copyright @ 2022 Oracle and/or its affiliates.

' 4
.. ® [
ER Y- .

SQL > SET GLOBAL server_id = 99;
Query 0K, @ rows affected (0.0083 sec)

SAL> SET GLOBAL binlog_transaction_dependency_tracking="writeset';
Query OK, @ rows affected (6.0082 sec)

SaQL > CHANGE REPLICATION SOURCE
TO RELAY_LOG FILE="my-compute-relay-bin.0000602",
RELAY_LOG_P0S=4, SOURCE_HOST='dummy';
Query OK, @ rows affected (0.1464 sec)

SQL > START REPLICA SQL_THREAD;
Query OK, @ rows affected (0.08144 sec)

SQL > SELECT LAST_APPLIED_TRANSACTION, APPLYING_TRANSACTION,
APPLYING_TRANSACTION_ORIGINAL_COMMIT_TIMESTAMP

FROM performance schema.replication_applier_status_by worker\G
khkkhkhhkhkhhkhhhkihkikhkhkhkkikkkik*k*x*% 1 Iow khkkhkhkhkhkhkhkhkhhkihkhkhhkrkhkikikkikkrki*kx*

LAST_APPLIED_TRANSACTION: b@@@98d6-72eb-11ec-b8d2-0200170c7057:607684

APPLYING_TRANSACTION: bo@098d0-72eb-11ec-b8d2-62008176c7657:6087685
APPLYING_TRANSACTION_ORIGINAL_COMMIT_TIMESTAMP: 20622-061-11 16:41:52.849261
khhkkkkhkdhkhkhhhkhkkikhkhrkkkkkkik*x 2. Iow hhkkkkhkhkhkhhhkkhkhkhkhkhhkkkkkikikik*x
LAST_APPLIED_TRANSACTION: b@@@98d@-72eb-11ec-b8d2-0200170c7057:607369
APPLYING_TRANSACTION:

SAL > select @@gtid purged, @@gtid _executed;

e o - +

| @@gtid purged | @@gtid executed |

e o - +

| bo@098dO-T72eb-11lec-...:1-581783:735903-5854318 | bA0@9I8dA-72eb-1lec-...:1-5854318 |

e o - +

SAL > select @@gtid purged, @@gtid _executed;

e o - +

| @@gtid purged | @@gtid executed |

e o - +

| bo@098dO-T72eb-11lec-...:1-581783:735903-5854318 | bA0@9I8dA-72eb-1lec-...:1-5854318 |

e o - +

SQL > select (select count(*) from sbtest.sbtestl) t1,

(ééieét count[*) from sbtest. sbtest8) t8'

e ket et et et il R +

|t2 |t3 Ith |t5 |t6 |t7

| 667831 | 670327 | 669287 | 668361 | 668443 | 668736 | 670188 | 669557 |

e e e e dmmm———— - dmm - dmmm——— - R +

select * from fosdem.tl;

2022-01-11
2022-01-11
2022-01-11
2022-01-11
2022-01-11
2022-01-12

in set (0.00086 sec)

And in the cloud ?

Setting up your strategy in OC/

Strategy in OCl with MDS

Oracle Cloud Infrastructure

Availability Domain 1

Fault Domain 1

IVCN
:10 .0.0.0/16

: Public Subnet
| 10.0.0.0/24

| Private Subnet
1 10.01.0/24

- Object Storage

mysql-binlogs-bucket

64 Copyright @ 2022 Oracle and/or its affiliates.

Strategy in OCIl with MDS (2)

« Backups/snapshots are managed by the Team
« Binary logs are purged every hour by default

. You need to stream your Binary logs to Object Storage using a dedicated compute
instance

« You can also perform logical dumps to Object Storage (not mandatory)

65 Copyright @ 2022 Oracle and/or its affiliates.

Strategy in OCl with MDS (3)

More details:

. https.//lefred.be/content/point-in-time-recovery-in-oci-mds-with-object-storage-part-

1/

. https.//lefred.be/content/point-in-time-recovery-in-oci-mds-with-object-storage-part-

o7

66 Copyright @ 2022 Oracle and/or its affiliates.

https://lefred.be/content/point-in-time-recovery-in-oci-mds-with-object-storage-part-1/
https://lefred.be/content/point-in-time-recovery-in-oci-mds-with-object-storage-part-2/

Questions ?

67 Copyright @ 2022 Oracle and/or its affiliates.

