
Flame Graphs for MySQL DBAs

Valerii Kravchuk, Principal Support Engineer, MariaDB
vkravchuk@gmail.com

1

www.percona.com

Profiling - challenges and solutions...

● Profiling is basically measuring frequency or duration of
function calls, or any resource usage per function call

● Problem: for complex software like MySQL server perf (or
any other profiler) produces too large data sets to study
efficiently

● Solutions: filtering (with grep), summarizing (with awk
etc, see how pt-pmp does this for gdb backtraces, some
120 lines of code) or … visualization as Heat Maps or
Flame Graphs (or in some GUI)

● It’s not a Linux-only profiling problem, Windows
Performance Analyzer (WPA) also supports flame graphs

2

https://en.wikipedia.org/wiki/Profiling_(computer_programming)
https://github.com/Percona-Lab/pt-pmp/blob/f0995aeb6aaa874fc026cc749aad032807a38e03/pt-pmp#L564
http://www.brendangregg.com/perf.html#HeatMaps
http://www.brendangregg.com/perf.html#FlameGraphs
https://docs.microsoft.com/en-us/windows-hardware/test/wpt/graphs#flame-graphs

www.percona.com

Raw profiling data are just timestamps and stacks

● Let’s run typical profiling session with perf while MySQL is under load:
openxs@ao756:~$ sudo perf record -a -g -F99 -- sleep 30
[perf record: Woken up 1 times to write data]
[perf record: Captured and wrote 1,144 MB perf.data (1684 samples)]

● Raw perf data are hardly useful “as is”:
openxs@ao756:~$ openxs@ao756:~$ sudo perf script | more
...
mysqld 143863 [001] 105802.967446:4744028 cycles:
 557a3c9d08bc insert_events_statements_history+0xac
(/usr/sbin/mysqld
)
 557a3c9c658b pfs_end_statement_v1+0x14ab (/usr/sbin/mysqld)
 557a3c6ec8b7 dispatch_command+0x557 (/usr/sbin/mysqld)
 557a3c6ee79f do_command+0x1ff (/usr/sbin/mysqld)
 557a3c7aecd8 handle_connection+0x2e8 (/usr/sbin/mysqld)
 557a3c9bf2c8 pfs_spawn_thread+0x168 (/usr/sbin/mysqld)
 7f2fea56d609 start_thread+0xd9
(/usr/lib/x86_64-linux-gnu/libpthread
-2.31.so) ...

● We still have to summarize them somehow for better overview!

3

www.percona.com

Problem of MySQL profiling - overview of the data

● We can summarize them with perf report:
openxs@ao756:~$ sudo perf report > perf.out

● Here is a small part of the output in perf.out (small font is in purpose):
...

36.54% 0.00% mysqld libpthread-2.31.so [.] start_thread
 |
 ---start_thread
 |
 |--32.59%--pfs_spawn_thread
 | |
 | --32.55%--handle_connection
 | |
 | --32.45%--do_command
 | |
 | |--30.96%--dispatch_command
 | | |
 | | --29.39%--mysqld_stmt_execute
 | | |
 | | --29.14%--Prepared_statement::execute_loop
 | | |
 | | --29.01%--Prepared_statement::execute
 | | |
 | | --27.80%--mysql_execute_command
 | | |
 | | |--19.09%--execute_sqlcom_select
 | | | |
 | | | |--18.20%--handle_query
 | | | | |
 | | | | |--9.37%--JOIN::exec
 | | | | | |
 | | | | | |--7.65%--sub_select
...

openxs@ao756:~$ ls -l perf.out
-rw-rw-r-- 1 openxs openxs 1109381 кві 25 15:55 perf.out

4

www.percona.com

Flame Graphs: what are they and how they help

● Flame graph is a way for visualizing any cumulative metrics in nested
hierarchies (like call stacks and time spent in each function)

● Consider this example (PS 5.7.33, sysbench read-write, bpftrace):

5

Flame Graphs - use free tools by Brendan Gregg

● http://www.brendangregg.com/flamegraphs.html
● Flame graphs produced by these tools are a visualization (as .svg file to be

checked in browser) of profiled software, allowing the most frequent
code-paths to be identified quickly and accurately.

● The x-axis shows the stack profile population, sorted alphabetically (it is not
the passage of time), and the y-axis shows stack depth. Each rectangle
represents a stack frame. The wider a frame is, the more often it was present
in the stacks.

● CPU Flame Graphs ← profiling by sampling at a fixed rate. Check this post.
● Memory Flame Graphs ← tracing malloc(), free(), brk(), mmap(),

page_fault
● Off-CPU Flame Graphs ← tracing file I/O, block I/O or scheduler
● Other kinds of flame graphs (Hot-Cold, Differential, pt-pmp-based etc),
● https://github.com/brendangregg/FlameGraph + perf + ... or bcc tools like

offcputime.py
6

http://www.brendangregg.com/flamegraphs.html
http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
https://www.percona.com/blog/2019/11/20/profiling-software-using-perf-and-flame-graphs/
http://www.brendangregg.com/FlameGraphs/memoryflamegraphs.html
http://www.brendangregg.com/FlameGraphs/offcpuflamegraphs.html
http://www.brendangregg.com/blog/2015-02-26/linux-perf-off-cpu-flame-graph.html
https://www.percona.com/blog/2020/01/15/using-flame-graphs-to-process-outputs-from-pt-pmp/
https://github.com/brendangregg/FlameGraph
https://github.com/iovisor/bcc/blob/master/tools/offcputime.py

flamegraph.pl - basic options
openxs@ao756:~/git/FlameGraph$./flamegraph.pl --help
USAGE: ./flamegraph.pl [options] infile > outfile.svg

 --title TEXT # change title text
 --subtitle TEXT # second level title (optional)
 --width NUM # width of image (default 1200)
 --height NUM # height of each frame (default 16)
 --minwidth NUM # omit smaller functions (default 0.1 pixels)
 --fonttype FONT # font type (default "Verdana")
 --fontsize NUM # font size (default 12)
 --countname TEXT # count type label (default "samples")
 --nametype TEXT # name type label (default "Function:")
 --colors PALETTE # set color palette. choices are: hot (default), mem, ...
 --bgcolors COLOR # set background colors. gradient choices are yellow
...
 --hash # colors are keyed by function name hash
 --cp # use consistent palette (palette.map)
 --reverse # generate stack-reversed flame graph
 --inverted # icicle graph
 --flamechart # produce a flame chart (sort by time, do not merge ...)
 --negate # switch differential hues (blue<->red)
 --notes TEXT # add notes comment in SVG (for debugging)

...
7

flamegraph.pl - expected input format

● Flame graphs can be generated from any profile data that
contains “stack traces”. This can be abused to show any
(cumulative) metric over a hierarchical structure.

● Check comments in the source code for format details:
...

The input is stack frames and sample counts formatted as single
lines. Each frame in the stack is semicolon separated, with a
space and count at the end of the line. These can be generated
for Linux perf script output using stackcollapse-perf.pl, for
DTrace using stackcollapse.pl, and for other tools
using the other stackcollapse programs. Example input:
#
swapper;start_kernel;rest_init;cpu_idle;default_idle;nati... 1
#
An optional extra column of counts can be provided to generate a
differential flame graph of the counts, colored red for more,
and blue for less...
...

8

https://tanelpoder.com/posts/visualizing-sql-plan-execution-time-with-flamegraphs/

Flame Graphs - tools to process stack traces

● Different stack output formats are supported by the tools, including
gdb, perf and bpftrace:

openxs@ao756:~/git/FlameGraph$ ls *.pl
aix-perf.pl stackcollapse-instruments.pl
difffolded.pl stackcollapse-java-exceptions.pl
files.pl stackcollapse-jstack.pl
flamegraph.pl stackcollapse-perf.pl
pkgsplit-perf.pl stackcollapse.pl
range-perf.pl stackcollapse-pmc.pl
stackcollapse-aix.pl stackcollapse-recursive.pl
stackcollapse-bpftrace.pl stackcollapse-stap.pl
stackcollapse-elfutils.pl stackcollapse-vsprof.pl
stackcollapse-gdb.pl stackcollapse-vtune.pl
stackcollapse-go.pl

● USAGE notes and sample command lines are presented in .pl files as
comments

9

CPU Flame Graph - simple example

● Created based on these steps (while sysbench oltp_read_write was
running):
openxs@ao756:~/git/FlameGraph$ sudo perf record -F 99 -a -g -- sleep 20
openxs@ao756:~/git/FlameGraph$ perf script | ./stackcollapse-perf.pl >
/tmp/perf-folded.out
openxs@ao756:~/git/FlameGraph$./flamegraph.pl --width=1000
/tmp/perf-folded.out > /tmp/mysqld_sysbench_read_write.svg

10

Custom CPU Flame Graph - hot mutex waits

● In some cases you may want to collapse stacks yourself. Check this blog post
for the details, but the idea was get “clean” frames from bpftrace (no address,
arguments etc), for better summarizing, and remove “garbage” output:

[openxs@fc31 ~]$ time sudo ./lll_lock_wait2.bt 60 2>/dev/null | awk '
BEGIN { s = ""; }
/^@futexstack\[\]/ { s = ""; }
/^@futexstack/ { s = ""; }
/^\t/ { if (index($2, "(") > 0) {targ = substr($2, 1, index($2, "(") - 1)}
else {targ = substr($2, 1, index($2, "+") - 1)} ; if (s != "") { s = s ";"
targ } else { s = targ } }
/^]/ { print $2, s }
' > /tmp/collapsed_lll_lock_v2_raw.txt

[openxs@fc31 ~]$ cat /tmp/collapsed_lll_lock_v2_raw.txt | awk '{ if
(length($2) > 0) {print $2, $1} }' |
/mnt/home/openxs/git/FlameGraph/flamegraph.pl --title="Time spent in
___lll_lock_wait in MariaDB 10.5, all frames" --countname=nsecs >
~/Documents/lll_lock_v2_2.svg

11

http://mysqlentomologist.blogspot.com/2021/01/playing-with-recent-bpftrace-and_30.html

Flame Graphs - what paths lead to mutex waits

● We ended up with the following result for the sysbench oltp_read_write test
running inserts into 5 tables from 32 threads on 4 cores:

12

Off-CPU Flame Graph - simple example

● Created based on these steps (while oltp_update_index.lua was running):

[openxs@fc29 FlameGraph]$ sudo /usr/share/bcc/tools/offcputime -df 60 >
/tmp/out.stacks
WARNING: 459 stack traces lost and could not be displayed.
[openxs@fc29 FlameGraph]$./flamegraph.pl --color=io --title="Off-CPU
Time Flame Graph" --countname=us < /tmp/out.stacks > ~/Documents/out.svg

● I’ve searched for “futex” and related frames are highlighted
13

Flame Graph based on pt-pmp output

● Created based on this (while oltp_read_only.lua was running on 8.0.27):

openxs@ao756:~$ sudo pt-pmp --iterations 10 --interval 1 > /tmp/pmp.out
openxs@ao756:~$ tail -n+2 /tmp/pmp.out | awk '{print $2, $1}' | sed -e
's/,/;/g'| ~/git/FlameGraph/flamegraph.pl --countname threads --reverse >
/tmp/pmp.svg

14

https://www.percona.com/blog/2020/01/15/using-flame-graphs-to-process-outputs-from-pt-pmp/

Memory Flame Graph

● Created based on output of hacked old mallocstacks.py from BPF-Tools.
Better use this version from bcc tools today. See this blog post for details:
openxs@ao756:~$ sudo ~/git/BPF-tools/old/2017-12-23/mallocstacks.py -p
$(pidof mysqld) -f >/tmp/alloc.out
openxs@ao756:~$ cat /tmp/alloc.out | ~/git/FlameGraph/flamegraph.pl
--color=mem --title="malloc() Flame Graph" --countname="bytes"
>/tmp/mysql8_malloc.svg

15

https://github.com/brendangregg/BPF-tools/blob/master/old/2017-12-23/mallocstacks.py
https://github.com/brendangregg/BPF-tools
https://github.com/iovisor/bcc/blob/master/examples/tracing/mallocstacks.py
http://mysqlentomologist.blogspot.com/2020/05/dynamic-tracing-of-memory-allocations.html

Flame Graphs based on Performance Schema

● Consider this output, where we see a clear hierarchy of instrumented waits:
mysql> select event_name, timer_wait from events_waits_history_long order
by 1 desc limit 5;
…
| wait/synch/sxlock/innodb/trx_purge_latch | 747273 |
…

● It takes just a few simple steps to convert this to a Flame Graph:
openxs@ao756:~/dbs/8.0$ cat /tmp/waits.txt | awk '{ printf("%s %d\n", $1,
$2); }' | sed 's/\//;/g' | ~/git/FlameGraph/flamegraph.pl --inverted
--colors io --title "Waits" --countname picoseconds --width 1000 >
/tmp/wait.svg

● You can add transactions, statements and stages on top:

16

http://mysqlentomologist.blogspot.com/2022/01/visualizing-performance-schema-events.html

Differential Flame Graphs

● The idea is to compare two flame graphs and highlight the difference (with red
for increase and blue for decrease). See this blog post and links from it…

● Check this page for more details and types of differential flame graphs
● I’ve tried to compare performance_schema reported waits for write only

sysbench test with innodb_flush_log_at_trx_commit values of 0 and 1:

openxs@ao756:~/dbs/8.0$ ~/git/FlameGraph/difffolded.pl /tmp/w64_0.out
/tmp/w64_1.out | ~/git/FlameGraph/flamegraph.pl --count picoseconds
--title Waits > /tmp/w64_01_diff.svg

17

http://mysqlentomologist.blogspot.com/2022/01/differential-flame-graphs-to-highlight.html
http://www.brendangregg.com/blog/2014-11-09/differential-flame-graphs.html

Visualizing MySQL Plan Execution Time

● EXPLAIN ANALYZE in MySQL 8.0.18+ presents a TREE view of query
execution steps with several (estimated and real) metrics for each step:
mysql> explain analyze select user, host from mysql.user u1 where u1.user
not in (select distinct user from mysql.user) order by host desc\G
*************************** 1. row ***************************
EXPLAIN: -> Nested loop antijoin (cost=3.75 rows=25) (actual
time=0.139..0.139 rows=0 loops=1)

-> Covering index scan on u1 using PRIMARY (reverse) (cost=0.75
rows=5) (actual time=0.058..0.064 rows=5 loops=1)
…

● With some efforts any tree of this kind can be visualized as a flame graph:

● I wish we had there in the table (like in Oracle) or in JSON format

18

http://mysqlentomologist.blogspot.com/2022/01/visualizing-mysql-plan-execution-time.html
https://tanelpoder.com/posts/visualizing-sql-plan-execution-time-with-flamegraphs/
https://bugs.mysql.com/bug.php?id=106083

Flame Graphs in MySQL Query Profiler

● You can get EXPLAIN ANALYZE output presented as a flame graph in the
open source tool called MySQL Query Profiler

● I’ve built it on macOS and here is what you can get for the same query:

19

https://gitlab.stud.idi.ntnu.no/erlenyd/mysql-query-profiler/-/tree/master

Flame Graphs - more examples, Q&A

● MySQL bug reports based on flame graphs (Mark Callaghan):
○ Bug #102238 - “log_writer uses too much CPU on small servers”. 8.0.22
○ Bug #102037 - “CPU overhead from inlists much larger in 8.0.22”.

● See also (from my collection):
○ https://www.percona.com/blog/2019/11/20/profiling-software-using-perf-and-flame-

graphs/
○ https://www.percona.com/blog/2020/01/15/using-flame-graphs-to-process-outputs-f

rom-pt-pmp
○ https://github.com/pingcap/tidb/pull/12986 - PR for TiDB (PingCap)
○ https://randomascii.wordpress.com/2013/03/26/summarizing-xperf-cpu-usage-with-

flame-graphs/ - WPA/Windows
○ https://archive.fosdem.org/2020/schedule/event/mysql_cpu_flames/ - "CPU

performance analysis for MySQL using Hot/Cold Flame Graph"
● Questions and Answers?

20

https://bugs.mysql.com/bug.php?id=102238
https://bugs.mysql.com/bug.php?id=102037
https://www.percona.com/blog/2019/11/20/profiling-software-using-perf-and-flame-graphs/
https://www.percona.com/blog/2019/11/20/profiling-software-using-perf-and-flame-graphs/
https://www.percona.com/blog/2020/01/15/using-flame-graphs-to-process-outputs-from-pt-pmp
https://www.percona.com/blog/2020/01/15/using-flame-graphs-to-process-outputs-from-pt-pmp
https://github.com/pingcap/tidb/pull/12986
https://randomascii.wordpress.com/2013/03/26/summarizing-xperf-cpu-usage-with-flame-graphs/
https://randomascii.wordpress.com/2013/03/26/summarizing-xperf-cpu-usage-with-flame-graphs/
https://archive.fosdem.org/2020/schedule/event/mysql_cpu_flames/

