
Encrypting binary
(and relay) logs in
MySQL

Matthias Crauwels
FOSDEM 2022 - Online
Sat Feb 5th

 © Pythian Services Inc 2021 | Confidential | 1

Speaker

 © Pythian Services Inc 2021 | Confidential | 2

Matthias Crauwels
Principal Consultant

Pythian - OSDB

How the data estate is evolving

 © Pythian Services Inc 2021 | Confidential | 3

Modern Cloud Data Platforms
are the enabler for insights
(BI), predictions (ML) and

product activation
(orchestration) and creation

(AppDev) across ALL
data sources.

OFFENSE
Data is the driver of innovation and

transformation

DEFENSE
Data powers the software that

drives the business

Traditional
On Premise

Enterprise Apps
i.e. Oracle, SAP etc

slowly moving
to Cloud, dragging

data with them.

Traditional Data
Warehouses are
being replaced with
modern cloud data
platforms.Modern

Applications/SaaS
start with modern,
often cloud-native
databases.

Operational
Excellence

Business
Transformation

Pythian’s Services Across the Data Estate

 © Pythian Services Inc 2021 | Confidential | 4

Modern Apps

Traditional
Enterprise

Apps

Traditional
Data Warehouses

OFFENSE
Data is the driver of innovation and
transformation. Cloud is the key
enabler

DEFENSE
Data powers the software that

drives the business

Consulting on
Data and

cloud strategy,
architecture,
models and

security

Cloud Data
Platforms

Migrate traditional
data warehouses to
native cloud data

warehouses
Integrate data from

data warehouses
into cloud data

platforms

Design, Build, Manage
and Optimize modern

data platforms at scale
in multi/hybrid clouds
Deploy new generation

analytics, BI, ML to
monetize data via

insights, predictions
and products

Managed services
to support 27 different

mission critical
databases 24/7.

Migrate workloads and
databases to Cloud,

modernize and provide
ongoing support.

Managed services
to support and

modernize
application

infrastructure and
database 24/7.

A G E N D A

● Introduction to MySQL Security features

● Encrypting the binary logs

● Keyring plugins

● Decrypting a binary log file

 © Pythian Services Inc 2021 | Confidential | 5

Default MySQL Security features (as of 5.7)

● MySQL generates a secure root password
[root@localhost ~]# systemctl start mysqld
[root@localhost ~]# cat /var/log/mysqld.log | grep 'temporary password'
2022-01-22T09:14:51.074966Z 6 [Note] [MY-010454] [Server] A temporary password is generated for
root@localhost: oDuMK*ey!3u(

● The root-account is locked
mysql> SELECT * FROM mysql.user;
ERROR 1820 (HY000): You must reset your password using ALTER USER statement before executing this
statement.

● The validate_password plugin/component is enabled
● SSL certificates are generated and used for TCP/IP connections

 © Pythian Services Inc 2021 | Confidential | 6

MySQL + encryption in flight

● SSL connectivity is using self-signed certificate
● Connection is encrypted but the identity of the server can not be

verified
● Best practice would be to use your company's Certification Authority

to sign a valid certificate so the identity could be verified.

 © Pythian Services Inc 2021 | Confidential | 7

[root@localhost mysql]# openssl x509 -in /var/lib/mysql/server-cert.pem -noout -text
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 2 (0x2)
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: CN = MySQL_Server_8.0.28_Auto_Generated_CA_Certificate
 Validity
 Not Before: Jan 22 09:14:50 2022 GMT
 Not After : Jan 20 09:14:50 2032 GMT
 Subject: CN = MySQL_Server_8.0.28_Auto_Generated_Server_Certificate
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public-Key: (2048 bit)

MySQL + encryption at rest

3 major options

● Encryption at disk level
● Encryption at database/table level
● Encryption at application level

 © Pythian Services Inc 2021 | Confidential | 8

MySQL: encryption at disk level

● Encryption is done at the OS level
● Protects you against someone pulling out a disk from the server
● All or nothing encryption
● Once you get into the server you can still copy the files to a

non-encrypted volume and get away with the data anyway

 © Pythian Services Inc 2021 | Confidential | 9

MySQL: encryption at database/table level

● Available since 5.7
● Only available for InnoDB:

mysql> CREATE TABLE t1 (c1 INT) ENGINE=InnoDB ENCRYPTION='Y';
Query OK, 0 rows affected (0.02 sec)

mysql> CREATE TABLE t2 (c1 INT) ENGINE=MyISAM ENCRYPTION='Y';
ERROR 1178 (42000): The storage engine for the table doesn't support ENCRYPTION

● Since 8.0.16 there is an option to enable table encryption by default.
SET GLOBAL default_table_encryption=ON;

 © Pythian Services Inc 2021 | Confidential | 10

MySQL: encryption at application level

● Most granular type of encryption
● At the discretion of the developer
● Data is encrypted BEFORE it's stored in the MySQL server
● Only the application logic knows which data was encrypted and how

to decrypt it

 © Pythian Services Inc 2021 | Confidential | 11

Beyond table-data encryption

● Doublewrite file encryption (since 8.0.23)
Automatically enabled for encrypted tablespaces

● mysql system tablespace encryption (since 8.0.16)
ALTER TABLESPACE mysql ENCRYPTION = 'Y';

● Redo and undo log encryption (since 8.0.1)
mysql> SET GLOBAL innodb_undo_log_encrypt = ON;
Query OK, 0 rows affected (0.00 sec)

mysql> SET GLOBAL innodb_redo_log_encrypt = ON;
Query OK, 0 rows affected (0.00 sec)

● Binary log encryption (since 8.0.14)
mysql> SET GLOBAL binlog_encryption = ON;
Query OK, 0 rows affected (0.02 sec)

 © Pythian Services Inc 2021 | Confidential | 12

MySQL binary log encryption: How?

mysql> SET GLOBAL binlog_encryption = ON;

ERROR 3794 (HY000): Unable to recover binlog encryption master key, please
check if keyring is loaded.

For all of the encryption features that MySQL supports you will need to
load a keyring plugin or component.

 © Pythian Services Inc 2021 | Confidential | 13

MySQL keyring plugins

● MySQL Community Edition comes with one keyring plugin:
○ keyring_file Stores keyring data in a file local to the server host

● MySQL Enterprise Edition comes with more plugins:
○ keyring_encrypted_file: Similar to keyring_file but encrypt and password protect

the file
○ keyring_okv: plugin to use with Oracle Key Vault
○ keyring_aws: plugin to use AWS Key Management Service
○ keyring_hashicorp: plugin to use Hashicorp Vault
○ keyring_oci: plugin to use Oracle Cloud Infrastructure Vault

● Percona Server adds an open source plugin to use Hashicorp Vault

 © Pythian Services Inc 2021 | Confidential | 14

MySQL keyring plugins: How?

In your my.cnf add these lines in the [mysqld] section

early-plugin-load=keyring_file.so
keyring-file-data=/var/lib/mysql-keyring/keyring

Restart MySQL

[root@localhost ~]# systemctl restart mysqld
[root@localhost ~]# mysql
...
mysql> SHOW PLUGINS;
+---------------------------------+----------+--------------------+-----------------+---------+
| Name | Status | Type | Library | License |
+---------------------------------+----------+--------------------+-----------------+---------+
...
| keyring_file | ACTIVE | KEYRING | keyring_file.so | GPL |
...
+---------------------------------+----------+--------------------+-----------------+---------+

 © Pythian Services Inc 2021 | Confidential | 15

MySQL binary log encryption: How?
mysql> SET GLOBAL binlog_encryption = ON;
Query OK, 0 rows affected (0.02 sec)

Great success!

mysql> SHOW BINARY LOGS;
+----------------------+-----------+-----------+
| Log_name | File_size | Encrypted |
+----------------------+-----------+-----------+
localhost-bin.000001	180	No
localhost-bin.000002	501	No
localhost-bin.000003	248	No
localhost-bin.000004	1083	Yes
+----------------------+-----------+-----------+
4 rows in set (0.00 sec)

If you enable binlog_encryption , this server will also automatically encrypt any relay
logs that it writes. So don't forget to enable binlog_encryption on all your replica's

 © Pythian Services Inc 2021 | Confidential | 16

MySQL binary log encryption: Now what?

[root@localhost mysql]# mysqlbinlog localhost-bin.000004
The proper term is pseudo_replica_mode, but we use this compatibility
alias
to make the statement usable on server versions 8.0.24 and older.
/*!50530 SET @@SESSION.PSEUDO_SLAVE_MODE=1*/;
/*!50003 SET @OLD_COMPLETION_TYPE=@@COMPLETION_TYPE,COMPLETION_TYPE=0*/;
DELIMITER /*!*/;
ERROR: Reading encrypted log files directly is not supported.
SET @@SESSION.GTID_NEXT= 'AUTOMATIC' /* added by mysqlbinlog */ /*!*/;
DELIMITER ;
End of log file
/*!50003 SET COMPLETION_TYPE=@OLD_COMPLETION_TYPE*/;
/*!50530 SET @@SESSION.PSEUDO_SLAVE_MODE=0*/;

 © Pythian Services Inc 2021 | Confidential | 17

MySQL binary log encryption: Now what?

● How can I use the binary logs to find my transactions?
● How can I do point-in-time recovery using the binary logs?

Some Google-fu landed me on this blog post:

https://dev.mysql.com/blog-archive/how-to-manually-decrypt-an-encryp
ted-binary-log-file/

MySQL engineer João Gramacho explains in great detail how the
encryption is done and he also provides a shell script to decrypt the
binary log files.

 © Pythian Services Inc 2021 | Confidential | 18

https://dev.mysql.com/blog-archive/how-to-manually-decrypt-an-encrypted-binary-log-file/
https://dev.mysql.com/blog-archive/how-to-manually-decrypt-an-encrypted-binary-log-file/

Decrypting the binary log files

First let's make sure that the binary log file is not being used anymore
mysql> FLUSH BINARY LOGS;
Query OK, 0 rows affected (0.01 sec)

mysql> SHOW BINARY LOGS;
+----------------------+-----------+-----------+
| Log_name | File_size | Encrypted |
+----------------------+-----------+-----------+
localhost-bin.000001	180	No
localhost-bin.000002	501	No
localhost-bin.000003	248	No
localhost-bin.000004	2758	Yes
localhost-bin.000005	709	Yes
+----------------------+-----------+-----------+
5 rows in set (0.00 sec)

 © Pythian Services Inc 2021 | Confidential | 19

Decrypting the binary log files

[root@localhost ~]# cp /var/lib/mysql/localhost-bin.000004 .
[root@localhost ~]# ls -hl
total 8.0K
-rwxr-xr-x. 1 root root 3.9K Jan 22 11:25 decrypt_binlog.sh
-rw-r-----. 1 root root 2.7K Jan 22 11:28 localhost-bin.000004
[root@localhost ~]#

I've copied my binary log to my working directory. And I've downloaded
João's script also to my working directory.

 © Pythian Services Inc 2021 | Confidential | 20

Decrypting the binary log files

[root@localhost ~]# ./decrypt_binlog.sh
Error: Please specify the binary log file to decrypt.

Usage: decrypt_binlog.sh <BINARY LOG FILE> [<KEYRING KEY VALUE>]
Where:
 <BINARY LOG FILE>:
 The binary or relay log file to be decrypted.
 <KEYRING KEY VALUE>:
 The keyring key value to decrypt the file.
 It shall be passed in hexadecimal notation.
 If not specified, the program will display the key ID that.
 is required to decrypt the file.

[root@localhost ~]# ./decrypt_binlog.sh localhost-bin.000004
Keyring key ID for 'localhost-bin.000004' is
'MySQLReplicationKey_34b46de1-7b6e-11ec-a7ee-080027fce996_1'

Okay? So where do I get this key from?

 © Pythian Services Inc 2021 | Confidential | 21

Decrypting the binary log files

mysql> SELECT * FROM performance_schema.keyring_keys;
+--+-----------+----------------+
| KEY_ID | KEY_OWNER | BACKEND_KEY_ID |
+--+-----------+----------------+
| MySQLReplicationKey_34b46de1-7b6e-11ec-a7ee-080027fce996_1 | | |
| MySQLReplicationKey_34b46de1-7b6e-11ec-a7ee-080027fce996 | | |
+--+-----------+----------------+
2 rows in set (0.00 sec)

Great! The key is actually in my keyring, now how do I get it out?

 © Pythian Services Inc 2021 | Confidential | 22

Decrypting the binary log files

MySQL provides some general purpose keyring function as user-defined
functions (UDF). The reference manual has instructions on how to install these.
INSTALL PLUGIN keyring_udf SONAME 'keyring_udf.so';
CREATE FUNCTION keyring_key_generate RETURNS INTEGER
 SONAME 'keyring_udf.so';
CREATE FUNCTION keyring_key_fetch RETURNS STRING
 SONAME 'keyring_udf.so';
CREATE FUNCTION keyring_key_length_fetch RETURNS INTEGER
 SONAME 'keyring_udf.so';
CREATE FUNCTION keyring_key_type_fetch RETURNS STRING
 SONAME 'keyring_udf.so';
CREATE FUNCTION keyring_key_store RETURNS INTEGER
 SONAME 'keyring_udf.so';
CREATE FUNCTION keyring_key_remove RETURNS INTEGER
 SONAME 'keyring_udf.so';

keyring_key_fetch seems like a good candidate. Let's give it a try.

 © Pythian Services Inc 2021 | Confidential | 23

Decrypting the binary log files

mysql> SELECT keyring_key_fetch('MySQLReplicationKey_34b46de1-7b6e-11ec-a7ee-080027fce996_1') as
encryption_key;
+--------------------------------+
| encryption_key |
+--------------------------------+
| NULL |
+--------------------------------+
1 row in set (0.00 sec)

 © Pythian Services Inc 2021 | Confidential | 24

Decrypting the binary log files

Manually creating a key in the keyring
mysql> SELECT keyring_key_generate('MyKey', 'RSA', 64) as encryption_key;
+----------------+
| encryption_key |
+----------------+
| 1 |
+----------------+

mysql> SELECT * FROM performance_schema.keyring_keys;
+--+----------------+----------------+
| KEY_ID | KEY_OWNER | BACKEND_KEY_ID |
+--+----------------+----------------+
...
| MyKey | root@localhost | |
+--+----------------+----------------+

mysql> SELECT keyring_key_fetch('MyKey') as encryption_key;
+--+
| encryption_key |
+--+
| 0xF7DD1291C1C229D77080838D4648DC7A...9E1C62BC46EA292FC9BBC47C9DBCF2249EE57ACC5B6700AE08FF50A |
+--+

 © Pythian Services Inc 2021 | Confidential | 25

Decrypting the binary log files

New approach let's have a look at the keyring itself. I used the
keyring_file plugin for this example, storing the keyring in file on the
system in /var/lib/mysql-keyring/keyring

[root@localhost ~]# ls -hl /var/lib/mysql-keyring/keyring
-rw-r-----. 1 mysql mysql 443 Jan 22 11:44 /var/lib/mysql-keyring/keyring

Let's copy this file also to our working directory to assess it.

 © Pythian Services Inc 2021 | Confidential | 26

Decrypting the binary log files

The keyring file is a binary file, so you can't just read it's contents, although you can make
something out of it...
[root@localhost ~]# cat keyring
Keyring file version:2.0�@MyKeyRSAroot@localhost��"��C�@���b��
`�����.g~��d���F�D����}
���t�=��QJ�Ǜgx8MySQLReplicationKey_34b46de1-7b6e-11ec-a7ee-080027fce996AES+305=Ljt0*!@$Hnm�:
MySQLReplicationKey_34b46de1-7b6e-11ec-a7ee-080027fce996_1AES��f\��?D$%�d+�T� �����
툭�-EOFc���b�!�?��Lu�O�(u�Y@m�l�
[root@localhost ~]#

João's script to the rescue?
[root@localhost ~]# ./decrypt_binlog.sh localhost-bin.000004 keyring
hex string is too short, padding with zero bytes to length
non-hex digit
invalid hex key value
[root@localhost ~]#

 © Pythian Services Inc 2021 | Confidential | 27

Decrypting the binary log files

I need this binary log for my point-in-time recovery!

My Google-fu to the rescue!

I found another blog post, by Jesper Krogh, linking to João's original post.
Jesper took João's script one step further and implemented in Python a
script where you can specify the keyring file as a parameter to decrypt
the binlog file.

https://mysql.wisborg.dk/2019/01/28/automatic-decryption-of-mysql-bin
ary-logs-using-python/

 © Pythian Services Inc 2021 | Confidential | 28

https://mysql.wisborg.dk/2019/01/28/automatic-decryption-of-mysql-binary-logs-using-python/
https://mysql.wisborg.dk/2019/01/28/automatic-decryption-of-mysql-binary-logs-using-python/

Decrypting the binary log files

I downloaded Jesper's script to my working directory and installed the
dependencies as he described them in his blog post.

[root@localhost ~]# ls -hl
total 24K
-rwxr-xr-x. 1 root root 12K Jan 22 12:05 decrypt_binlog.py
-rwxr-xr-x. 1 root root 3.9K Jan 22 11:25 decrypt_binlog.sh
-rw-r-----. 1 root root 443 Jan 22 11:50 keyring
-rw-r-----. 1 root root 2.7K Jan 22 11:28 localhost-bin.000004

 © Pythian Services Inc 2021 | Confidential | 29

Decrypting the binary log files

[root@localhost ~]# python3.6 decrypt_binlog.py -k keyring localhost-bin.000004
localhost-bin.000004: Keyring key ID for is
'MySQLReplicationKey_34b46de1-7b6e-11ec-a7ee-080027fce996_1'
localhost-bin.000004: Successfully decrypted as '/root/plain-localhost-bin.000004'
[root@localhost ~]# ls -hl
total 28K
-rwxr-xr-x. 1 root root 12K Jan 22 12:05 decrypt_binlog.py
-rwxr-xr-x. 1 root root 3.9K Jan 22 11:25 decrypt_binlog.sh
-rw-r-----. 1 root root 443 Jan 22 11:50 keyring
-rw-r-----. 1 root root 2.7K Jan 22 11:28 localhost-bin.000004
-rw-r--r--. 1 root root 2.2K Jan 22 12:08 plain-localhost-bin.000004
[root@localhost ~]#

Great success?!

 © Pythian Services Inc 2021 | Confidential | 30

Decrypting the binary log files
[root@localhost ~]# mysqlbinlog plain-localhost-bin.000004
...
#220122 10:57:39 server id 1 end_log_pos 382 CRC32 0x6d429f13 Query thread_id=8 exec_time=0 error_code=0 Xid = 5
SET TIMESTAMP=1642849059/*!*/;
SET @@session.pseudo_thread_id=8/*!*/;
SET @@session.foreign_key_checks=1, @@session.sql_auto_is_null=0, @@session.unique_checks=1, @@session.autocommit=1/*!*/;
SET @@session.sql_mode=1168113696/*!*/;
SET @@session.auto_increment_increment=1, @@session.auto_increment_offset=1/*!*/;
/*!\C utf8mb4 *//*!*/;
SET @@session.character_set_client=255,@@session.collation_connection=255,@@session.collation_server=255/*!*/;
SET @@session.lc_time_names=0/*!*/;
SET @@session.collation_database=DEFAULT/*!*/;
/*!80011 SET @@session.default_collation_for_utf8mb4=255*//*!*/;
/*!80016 SET @@session.default_table_encryption=0*//*!*/;
CREATE DATABASE test
/*!*/;
at 382
...

 © Pythian Services Inc 2021 | Confidential | 31

Decrypting the binary log files

Important to note is that Jesper's script only works for the keyring_file
plugin. Quoting the Jesper's blog:

"The keyring must be from the keyring_file plugin and using format version
2.0 (the format current as of MySQL 8.0.14). If you use a different keyring
plugin, you can use the keyring migration feature to create a copy of the
keyring using keyring_file. (But, please note that keyring_file is not a
secure keyring format.)"

 © Pythian Services Inc 2021 | Confidential | 32

MySQL keyring migration feature

If you want to use encrypted binary logs you probably don't want to use
the keyring_file plugin as it not secure. Without specifying any password
I could eventually decrypt my binary log file.

Let me try MySQL Enterprise keyring_encrypted_file plugin.

 © Pythian Services Inc 2021 | Confidential | 33

MySQL keyring migration feature

Enabling the keyring_encrypted_file plugin takes a parameter to store the
keyring and a password to encrypt the data in the keyring

[root@node1 ~]# cat /etc/my.cnf | grep keyring
early-plugin-load=keyring_encrypted_file.so
keyring_encrypted_file_data=/var/lib/mysql-keyring/keyring-encrypted
keyring_encrypted_file_password=password

 © Pythian Services Inc 2021 | Confidential | 34

MySQL keyring migration feature

Binary log encryption is active
mysql> SHOW BINARY LOGS;
+----------------------+-----------+-----------+
| Log_name | File_size | Encrypted |
+----------------------+-----------+-----------+
localhost-bin.000001	179	No
localhost-bin.000002	498	No
localhost-bin.000003	219	No
localhost-bin.000004	247	No
localhost-bin.000005	759	Yes
localhost-bin.000006	944	Yes
localhost-bin.000007	2107	Yes
localhost-bin.000008	708	Yes
+----------------------+-----------+-----------+

 © Pythian Services Inc 2021 | Confidential | 35

MySQL keyring migration feature

Preparing the keyring-migration config file

[root@node1 ~]# cat keyring-migration.cnf
[mysqld]
user=mysql

keyring_encrypted_file_data=/tmp/keyring-encrypted
keyring_file_data=/tmp/keyring

Checking if the encrypted keyring file is in place

[root@node1 ~]# ls -hl /tmp/key*
-rw-r-----. 1 mysql mysql 437 Jan 22 19:00 /tmp/keyring-encrypted

 © Pythian Services Inc 2021 | Confidential | 36

MySQL keyring migration feature

Running mysqld as the keyring migration service

[root@node1 ~]# mysqld --defaults-file=keyring-migration.cnf \
--keyring-migration-source=keyring_encrypted_file.so \
--keyring-migration-destination=keyring_file.so \
--keyring_encrypted_file_password=password
2022-01-22T19:04:53.688417Z 0 [System] [MY-010116] [Server] /usr/sbin/mysqld
(mysqld 8.0.22-commercial) starting as process 4755
2022-01-22T19:04:53.843074Z 0 [System] [MY-010910] [Server]
/usr/sbin/mysqld: Shutdown complete (mysqld 8.0.22-commercial) MySQL
Enterprise Server - Commercial.

 © Pythian Services Inc 2021 | Confidential | 37

MySQL keyring migration feature

Verification if the decrypted file is actually there

[root@node1 ~]# ls -hl /tmp/key*
-rw-r-----. 1 mysql mysql 395 Jan 22 19:04 /tmp/keyring
-rw-r-----. 1 mysql mysql 437 Jan 22 19:00 /tmp/keyring-encrypted

 © Pythian Services Inc 2021 | Confidential | 38

MySQL keyring migration feature

With the encrypted keyring Jesper's python script fails
[root@node1 ~]# python3.6 binlog_decrypt.py -k /tmp/keyring-encrypted node1-bin.000004
Traceback (most recent call last):
 File "binlog_decrypt.py", line 301, in <module>
 main(sys.argv[1:])
 File "binlog_decrypt.py", line 297, in main
 decrypt_binlogs(args)
 File "binlog_decrypt.py", line 242, in decrypt_binlogs
 keyring = Keyring(args.keyring_file_data)
 File "binlog_decrypt.py", line 48, in __init__
 self.read_keyring(keyring_filepath)
 File "binlog_decrypt.py", line 88, in read_keyring
 .format(header.hex()))
ValueError: Invalid header in the keyring file: 4b657972696e6720656e637279707465642066696c

 © Pythian Services Inc 2021 | Confidential | 39

MySQL keyring migration feature

With the decrypted keyring file the script could successfully decrypt the
binary log file

[root@node1 ~]# python3.6 binlog_decrypt.py -k /tmp/keyring node1-bin.000004
node1-bin.000004: Keyring key ID for is
'MySQLReplicationKey_e30eac4c-633c-11ec-92fc-5254008afee6_1'
node1-bin.000004: Successfully decrypted as '/root/plain-node1-bin.000004'
[root@node1 ~]#

 © Pythian Services Inc 2021 | Confidential | 40

Conclusion

 © Pythian Services Inc 2021 | Confidential | 41

Conclusion

 © Pythian Services Inc 2021 | Confidential | 42

● Encrypting binary logs is not hard
● Selecting a secure keyring is harder

○ The only secure open source keyring is Percona's keyring_vault plugin which
requires you to have an Hashicorp Vault installation.

● When backing up binary logs for point-in-time recovery you will need
to ensure that you also backup your keyring to be able to decrypt the
binary logs when you need them

● mysqld can be used as a keyring-migration-tool
● Add Jesper's python script to your DBA toolbox

Thank You

 © Pythian Services Inc 2021 | Confidential | 43

email: crauwels@pythian.com
twitter: @mcrauwel

mailto:crauwels@pythian.com

MySQL keyring migration feature

I created a vault server for the purpose of this demo
[root@localhost ~]# vault status
Key Value
--- -----
Seal Type shamir
Initialized true
Sealed false
Total Shares 1
Threshold 1
Version 1.9.2
Storage Type file
Cluster Name vault-cluster-929598a1
Cluster ID 1ca9171c-247d-1778-b6db-3570179e8fcc
HA Enabled false

 © Pythian Services Inc 2021 | Confidential | 44

MySQL keyring migration feature

And I did a default configuration of my keyring_vault plugin

[root@localhost ~]# cat /etc/my.cnf | grep keyring
early-plugin-load="keyring_vault=keyring_vault.so"
loose-keyring_vault_config="/etc/my.cnf.d/keyring_vault.conf"

[root@localhost ~]# cat /etc/my.cnf.d/keyring_vault.conf
vault_url = https://127.0.0.1:8200
secret_mount_point = secret/mysql1
secret_mount_point_version = AUTO
token = s.DQkShRUw9B8y3eI6IxrCJyEh
vault_ca = /etc/sslkeys/vault.crt

 © Pythian Services Inc 2021 | Confidential | 45

https://127.0.0.1:8200

