. o
g

iy

™,
- - VNN £ <
" o OO 'y - .‘ g A g ' 1 p o & ./’/(\ .
o . e N Lz RSy N ‘ NI A S AN
o - -~k \\‘ ._‘)_:‘ - i ¥ /‘,l + | / /] »/:,. N
oy e o ' YN/ XV | I\ :
. a5l . 14 /N | K |/ \
4% / s > * Pt ' A YA VA | /N
: T - A A s = A \
» 18 3w e T A sy [¥ /

ey s / v Tz o [SN 8 \ /)

/ A Ve> S P4\ W) SVAD <

.y -) i t ¥ s \ 21N/ ¥ D {

s 1w i i S RIS X /N
B | AN N P | A
» v ! B s ! ¥ ; { 1 7 & \ RN x i \\:\ Sl N
- S| ! * if / | AL R x NN P ARV |

1 N 1 Y A ¥ A) A Nt X b T !

’ ” .t ' ” A Y
v f X X SN \

; s A~ LA TSN N A~ IV
f g \ Sk AN AN r =T

| / x X \ \ Y
77 VA USSR 1
|) \ A
s 3N
; T A ¥ 1 . N
1 X

Changes in MariabDB

= a
T
=
..

=]
=* . "

Marko Makela
Lead Developer InnoDB
MariaDB Corporation

ACID Transactions for InnoDB in MariaDB

MariaDB: Every access is covered by metadata locks (MDL) on the table name

e InnoDB modifications: table locks, index record locks and page latches

DELETE (or DROP) will only schedule data for future removal, after COMMIT

e Any important state changes will be durably written to the redo log first
o Atransaction may consist of several mini-transactions

o Fora COMMIT to be durable, everything up to the commit LSN must be written

Atomicity, Consistency, Isolation, Durability JMqriaDB

InnoDB ACID Basics: Locks and Log

A log sequence number (LSN) totally orders the output of mini-transactions

o An atomic change to pages is durable if all log up to the end LSN has been written
e Undo log pages implement ACID transactions (implicit locks, rollback, MVCC)
e \Write-ahead logging: The FIL_PAGE_LSN of a changed page must be durable
e Log checkpoint: write all changed pages older than the checkpoint LSN

e Recovery will have to process log from the checkpoint LSN to last durable LSN

Constraints J MariaDB

Atomic Mini-Transactions: Latches and Log

Locks or
Buffer-Fixes

Page Changes
N %

commit

Log position (LSN)

Log Buffer

ﬂ\/lini-Transaction\ /
Memo:

dict_index_t::lock
covers non-leaf pages

fil_space_t::latch
covers page allocation

e
/

uffer pool page
buf_page_t::

A mini-transaction commit stores
the log position (LSN) to each
changed page.

Recovery will apply log if its LSN
is newer than the
FIL_PAGE_LSN.

Flush list
Flush (after log)

log_sys.buf

Mini-Transactions and Recovery

Write ahead (of page flush) to log

Recovery Processes Log from Checkpoint

e The checkpoint LSN defines the logical point of time for starting recovery
e The logical end of the circular ib_logfile®@ must never overwrite the start!

e The start is logically discarded by advancing the checkpoint LSN
o Checkpoint LSN must not be ahead of MIN(oldest_modification) in buf_pool
e Useinnodb_log_file_size » innodb_buffer_pool_size to optimize

o MariaDB Server 10.5 improved the efficiency of memory usage on recovery

Checkpoint Flushing and Recovery JMqriaDB

A Simplified View of the ib_logfile®

e Header block (512 bytes): Identifies the log file format and stores first_1sn:
the LSN when the file was created, at START_OFFSET

e 2 checkpoint blocks (overwritten alternatively), containing
o The checkpoint LSN (start of the log for recovery)

o An “end” LSN pointing to records that identify names of files that were modified since
the previous checkpoint (at the end of the log at the time of the checkpoint)

e Logrecords: capacity() bytes from START_OFFSET to file_size

e The byte offset of an LSN is given by the formula:
START_OFFSET + (1sn - first_lsn) % capacity()

InnoDB Log File Structure J MariaDB

A Simplified View of Recovery

1. Determine the latest checkpoint LSN, and jump to the “end” LSN

o We expect to find any number of FILE_MODIFY records and a FILE_CHECKPOINT
record pointing to the checkpoint LSN

2. Start processing records from the checkpoint LSN to the very end

o After the last complete mini-transaction, we will encounter checksum or sequence
number mismatch

o Construct a mapping from numeric tablespace identifiers to file names

o Store page-level log in a hash table: (tablespace_id,page_number)~(records)

How Recovery Works J MariaDB

Memory Management During Recovery

e For applying changes, we must allocate pages in the buffer pool
o Typically for reading an old version of the page, to apply log on
o MariaDB 10.2+ avoids read if the page was (re)initialized since the checkpoint

o MariaDB 10.5+ discards log if the page was freed since the checkpoint

Memory for the hash table of records is allocated from the buffer pool
e Multiple apply batches may be needed to make memory available

e During the final batch, we can allow concurrent access to the database

How Recovery Works J MariaDB

ib_logfile® Format Changes in MariaDB

e Before MDEV-12353 in MariaDB Server 10.5, log records had an irregular
structure with no explicit length information

o Parsing invoked “dry run” of the “apply” function of each log record type

e Redo log was stored in 512-byte blocks with some header and a footer
o Validate and decrypt log blocks, copy the payload to recv_sys.buf

o NMDEV-14425 (10.8): Remove the block structure

o Process records directly from 1log_sys.buf (innodb_log_buffer_size)

o Optionally, with mmap () of the entire log file

Log File Format Changes J MariaDB

https://jira.mariadb.org/browse/MDEV-12353
https://jira.mariadb.org/browse/MDEV-14425

The MDEV-12353 Log Record Format

4 bits of type and 4 bits of length
o If this byte is 0, this is the end of a mini-transaction (or a padding byte)

o If the length bits are 0, the record will be longer than 16 bytes, and the remaining
length will be written using variable-length encoding

e Tablespace ID and page number with variable-length encoding (1 to 5 bytes)
o Omitted if the “same page” bit of the type is set (never for the first record)
e Any remaining bytes are interpreted according to the type bits

e If the “same page” bit is set in the first record, the mini-transaction only contains
file-level records or the special FILE_CHECKPOINT record

Log File Format Changes JMoria DB

https://jira.mariadb.org/browse/MDEV-12353

The MDEV-14425 Mini-Transaction Format

e An end byte 8x00 or 0x81 marks the end of a mini-transaction

o An INIT_PAGE record would always start with a byte 8x02 to 0x0a
e If innodb_encrypt_1log=0N, an 8-byte nonce will follow the end byte
e Last, a 4-byte checksum of the mini-transaction (excluding the end byte)

e The end byte contains a sequence bit: number of times the circular redo log
wrapped around from the end, modulo 2

e For padding log blocks, dummy mini-transactions could be written

o Parser support is present, but we are not padding anything right now

Log File Format Changes JMoria DB

https://jira.mariadb.org/browse/MDEV-14425

Example: A MDEV-14425 Mini-Transaction

e 35 00 08 81 e5 20 (the non-bold bytes may be encrypted)

o WRITE(3), 5 bytes follow, tablespace 0, page 8

o Offset 613 (0x81e5 decoded as 0x80+0x1e5), 1 byte to write: 0x20

e b9 1e Qe B7 00 00 01 38 92 ff

o WRITE(3), same page, offset 644 (613+1+0x1e), 8 bytes to write
e 01 (end of mini-transaction, and the value of the sequence bit at this point)

e 97 41 0a 2d

o HEX(CRC32C(x'35000881e520b91e0€0000102ff "))

Log File Format Changes JMoria DB

https://jira.mariadb.org/browse/MDEV-14425

The MDEV-14425 Encrypted Log Format

e We never encrypt file names, LSN, tablespace id, page number
o They were always available even in encrypted data files anyway
o Decryption is only needed for applying log, not for backup
o No mutex is held while encrypting or calculating checksums

e The record payload (excluding type, length, tablespace identifier, page number)
is encrypted with an initialization vector that consists of:

o the tablespace identifier and the page number of the current record

o the 8-byte nonce that precedes the mini-transaction checksum

Log File Format Changes JMoria DB

https://jira.mariadb.org/browse/MDEV-14425

Changes to File System Interface
e On Linux and Windows: Detect and use the physical block size; on Linux, allow
O_DIRECT onthe ib_logfile®

e When built with 1ibpmem and the log is in a mount -o dax filesystem, we
make log_sys.buf point directly to the persistent memory

e On Linux, we also allow “fake PMEM” when the log is in /dev/shm
o Alittle faster Cl runs (Linux regression tests run on /dev/shm)
o More convenient rr debugging: the entire log is in 1og_sys.buf at all times

o innodb_log_group_home_dir=/dev/shm gives PMEM performance estimate

File System Interface J MariaDB

https://rr-project.org

—_——

-

"Thank you for using MariaDB!

