
Performance Oriented 
InnoDB Log Format 
Changes in MariaDB
Marko Mäkelä
Lead Developer InnoDB
MariaDB Corporation



Atomicity, Consistency, Isolation, Durability

ACID Transactions for InnoDB in MariaDB

● MariaDB: Every access is covered by metadata locks (MDL) on the table name

● InnoDB modifications: table locks, index record locks and page latches

● DELETE (or DROP) will only schedule data for future removal, after COMMIT

● Any important state changes will be durably written to the redo log first

○ A transaction may consist of several mini-transactions

○ For a COMMIT to be durable, everything up to the commit LSN must be written



Constraints

InnoDB ACID Basics: Locks and Log

● A log sequence number (LSN) totally orders the output of mini-transactions

○ An atomic change to pages is durable if all log up to the end LSN has been written

● Undo log pages implement ACID transactions (implicit locks, rollback, MVCC)

● Write-ahead logging: The FIL_PAGE_LSN of a changed page must be durable

● Log checkpoint: write all changed pages older than the checkpoint LSN

● Recovery will have to process log from the checkpoint LSN to last durable LSN



Mini-Transactions and Recovery

Atomic Mini-Transactions: Latches and Log

Mini-Transaction

Memo:
Locks or 
Buffer-Fixes

dict_index_t::lock 
covers non-leaf pages

Log:
Page Changes

Data Files
FIL_PAGE_LSNFlush (after log)

ib_logfile0Log Buffer
log_sys.buf Write ahead (of page flush) to log

commit

A mini-transaction commit stores 
the log position (LSN) to each 
changed page.

Recovery will apply log if its LSN 
is newer than the 
FIL_PAGE_LSN.

Log position (LSN) Flush list
Buffer pool page
buf_page_t::
oldest_modification

fil_space_t::latch
covers page allocation



How InnoDB Crash 
Recovery Works

MariaDB Server



Checkpoint Flushing and Recovery

Recovery Processes Log from Checkpoint

● The checkpoint LSN defines the logical point of time for starting recovery

● The logical end of the circular ib_logfile0 must never overwrite the start!

● The start is logically discarded by advancing the checkpoint LSN

○ Checkpoint LSN must not be ahead of MIN(oldest_modification) in buf_pool

● Use innodb_log_file_size ≫ innodb_buffer_pool_size to optimize

○ MariaDB Server 10.5 improved the efficiency of memory usage on recovery



InnoDB Log File Structure

A Simplified View of the ib_logfile0

● Header block (512 bytes): Identifies the log file format and stores first_lsn: 
the LSN when the file was created, at START_OFFSET

● 2 checkpoint blocks (overwritten alternatively), containing

○ The checkpoint LSN (start of the log for recovery)

○ An “end” LSN pointing to records that identify names of files that were modified since 
the previous checkpoint (at the end of the log at the time of the checkpoint)

● Log records: capacity() bytes from START_OFFSET to file_size

● The byte offset of an LSN is given by the formula:
START_OFFSET + (lsn - first_lsn) % capacity()



How Recovery Works

A Simplified View of Recovery

1. Determine the latest checkpoint LSN, and jump to the “end” LSN

○ We expect to find any number of FILE_MODIFY records and a FILE_CHECKPOINT 
record pointing to the checkpoint LSN

2. Start processing records from the checkpoint LSN to the very end

○ After the last complete mini-transaction, we will encounter checksum or sequence 
number mismatch

○ Construct a mapping from numeric tablespace identifiers to file names

○ Store page-level log in a hash table: (tablespace_id,page_number)↦(records)



How Recovery Works

Memory Management During Recovery

● For applying changes, we must allocate pages in the buffer pool

○ Typically for reading an old version of the page, to apply log on

○ MariaDB 10.2+ avoids read if the page was (re)initialized since the checkpoint

○ MariaDB 10.5+ discards log if the page was freed since the checkpoint

● Memory for the hash table of records is allocated from the buffer pool

● Multiple apply batches may be needed to make memory available

● During the final batch, we can allow concurrent access to the database



Format Changes for 
Performance

MariaDB Server



Log File Format Changes

ib_logfile0 Format Changes in MariaDB

● Before MDEV-12353 in MariaDB Server 10.5, log records had an irregular 
structure with no explicit length information

○ Parsing invoked “dry run” of the “apply” function of each log record type

● Redo log was stored in 512-byte blocks with some header and a footer

○ Validate and decrypt log blocks, copy the payload to recv_sys.buf

● MDEV-14425 (10.8): Remove the block structure

○ Process records directly from log_sys.buf (innodb_log_buffer_size)

○ Optionally, with mmap() of the entire log file

https://jira.mariadb.org/browse/MDEV-12353
https://jira.mariadb.org/browse/MDEV-14425


Log File Format Changes

The MDEV-12353 Log Record Format

● 4 bits of type and 4 bits of length

○ If this byte is 0, this is the end of a mini-transaction (or a padding byte)

○ If the length bits are 0, the record will be longer than 16 bytes, and the remaining 
length will be written using variable-length encoding

● Tablespace ID and page number with variable-length encoding (1 to 5 bytes)

○ Omitted if the “same page” bit of the type is set (never for the first record)

● Any remaining bytes are interpreted according to the type bits

● If the “same page” bit is set in the first record, the mini-transaction only contains 
file-level records or the special FILE_CHECKPOINT record

https://jira.mariadb.org/browse/MDEV-12353


Log File Format Changes

The MDEV-14425 Mini-Transaction Format

● An end byte 0x00 or 0x01 marks the end of a mini-transaction

○ An INIT_PAGE record would always start with a byte 0x02 to 0x0a

● If innodb_encrypt_log=ON, an 8-byte nonce will follow the end byte

● Last, a 4-byte checksum of the mini-transaction (excluding the end byte)

● The end byte contains a sequence bit: number of times the circular redo log 
wrapped around from the end, modulo 2

● For padding log blocks, dummy mini-transactions could be written

○ Parser support is present, but we are not padding anything right now

https://jira.mariadb.org/browse/MDEV-14425


Log File Format Changes

Example: A MDEV-14425 Mini-Transaction

● 35 00 08 81 e5 20 (the non-bold bytes may be encrypted)

○ WRITE(3), 5 bytes follow, tablespace 0, page 8

○ Offset 613 (0x81e5 decoded as 0x80+0x1e5), 1 byte to write: 0x20

● b9 1e 0e 07 00 00 01 38 02 ff

○ WRITE(3), same page, offset 644 (613+1+0x1e), 8 bytes to write

● 01 (end of mini-transaction, and the value of the sequence bit at this point)

● 97 41 0a 2d

○ HEX(CRC32C(x’35000881e520b91e0e0000102ff’))

https://jira.mariadb.org/browse/MDEV-14425


Log File Format Changes

The MDEV-14425 Encrypted Log Format

● We never encrypt file names, LSN, tablespace id, page number

○ They were always available even in encrypted data files anyway

○ Decryption is only needed for applying log, not for backup

○ No mutex is held while encrypting or calculating checksums

● The record payload (excluding type, length, tablespace identifier, page number) 
is encrypted with an initialization vector that consists of:

○ the tablespace identifier and the page number of the current record

○ the 8-byte nonce that precedes the mini-transaction checksum

https://jira.mariadb.org/browse/MDEV-14425


File System Interface

Changes to File System Interface

● On Linux and Windows: Detect and use the physical block size; on Linux, allow 
O_DIRECT on the ib_logfile0

● When built with libpmem and the log is in a mount -o dax filesystem, we 
make log_sys.buf point directly to the persistent memory

● On Linux, we also allow “fake PMEM” when the log is in /dev/shm

○ A little faster CI runs (Linux regression tests run on /dev/shm)

○ More convenient rr debugging: the entire log is in log_sys.buf at all times

○ innodb_log_group_home_dir=/dev/shm gives PMEM performance estimate

https://rr-project.org


Thank you for using MariaDB!


