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SUMMARY

What?
An open source book to educate on low-level software security (for compiler developers)
Why?
As compiler developers, we feel we could use more expertise.
There is no good broad educational material. So why not create it ourselves?
How?
Open source: enable more experts to contribute.
Make it freely available: multiply impact.
Status?
Just started public development. First content written. Help (reviews, contributions, ...)
very welcome!
Measures of success?
End result: Security features are implemented better in code generation frameworks.
Fewer attacks succeed in breaking hardening features.



MOTIVATION: LACK OF EDUCATIONAL MATERIAL ON
LOW-LEVEL SOFTWARE SECURITY

e Many compiler engineers that from time to time work on security features feel they
sometimes lack deep expertise. It makes them somewhat unsure about design and trade-off
decisions when implementing security features.

m Results in slower, poorer-quality deployment of support for security features and
mitigations for vulnerabilities.

e This seems to be true across the industry.

e We did not find good educational material to help us overcome the lack of expertise.

= Security researchers tend to publish specific exploits; but there is little material giving an
overview of “this is what compiler engineers should know about security related to

compilers.”



MOTIVATION: IS IT WORTH IT TO CREATE A BOOK?

e Thereis no better way to learn about a topic than to try and explain it in simple language to
someone else? (see Feynman Technique).
e ¥ Compiler engineers tend to work more often on security features.
¥| ¥ Making the book public: more compiler engineers can profit from the book.
¥| ¥ ¥ Making the book open source:
= We can get input from experts on topics we lack expertise in.
= |t may help strengthen the network of low-level software security experts.

e Book may also help other low-level software developers such as firmware and kernel
developers?


https://law-hawaii.libguides.com/notetaking/feynman

WHICH LICENSE?

e Aim to make it easy both to contribute and to consume the book. We chose for
the Creative Commons Attribution (CC-BY-4.0) license.


https://creativecommons.org/licenses/by/4.0/
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1 Introduction

Compilers, assemblers and similar tools generate all the binary code that processors execute. It is no
surprise then that for security analysis and hardening relevant for binary code, these tools have a
major role to play. Often the only practical way to protect all binaries with a particular security
hardening method is to let the compiler adapt its automatic code generation.

With software security becoming even more important in recent years, it is no surprise to see an ever
increasing variety of security hardening features and mitigations against vulnerabilities implemented
in compilers.

Indeed, compared to a few decades ago, today’s compiler developer is much more likely to work on
security features, at least some of their time.

Furthermore, with the ever-expanding range of techniques implemented, it has become very hard to
gain a basic understanding of all security features implemented in typical compilers.

This poses a practical problem: compiler developers must be able to work on security hardening
features, yet it is hard to gain a good basic understanding of such compiler features.

This boaok aims to help developers of code generation tools such as JITs, compilers, linkers and
assemblers to overcome this.

There is a lot of material that can be found explaining individual vulnerabilities or attack vectors.
There are also lots of presentations explaining specific exploits. But there seems to be a limited set of
material that gives a structured overview of all vulnerabilities and exploits for which a code generator
could play a role in protecting against them.

This book aims to provide such a structured, broad overwew It does not necessanly go into full
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CURRENT STRUCTURE OF THE BOOK

. Introduction

. Memory vulnerability based attacks and mitigations

. Covert channels and side-channels

. Physical access side-channel attacks

. Remote access side-channel attacks

. Supply chain attacks

. Other security topics relevant for compiler
developers



LOOKING FOR HELP

The project is at its start - maybe 5% of the content it present. We can use a lot of
help and contributions:

e |deas for new content.

e Any other ideas on how to improve the book.

e Review of existing content and newly written content in pull requests.
e Contributions of new sections or improvements to the text.

e Introduce your friends to this project.

How to reach out:

Raise a github issue or start a discussion thread at
github.com/llsoftsec/llsoftsecbook/
e Reach out to mein any way, e.g. by email at kristof.beyls at gmail.com


https://github.com/llsoftsec/llsoftsecbook/

