

Using LibreSilicon

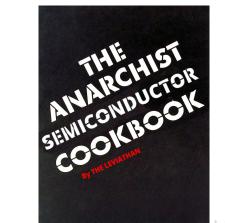
The Leviathan

January 19, 2022

How to actually use the process and scale it

Batch loading

Manual loading

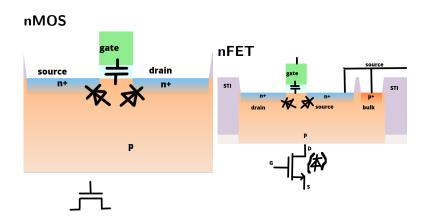


Reasons for LibreSilicon

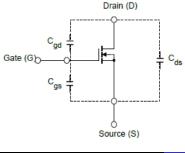
- Vendor lock-out
- Vendor lock-in
- Supply chain shortage
- Transparency issue
- NDAs hinder cooperation and exchange of ideas
- Intellectual property laws are weaponized by countries to hurt other countries and their economy

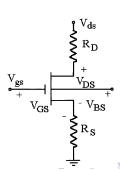
Goal of LibreSilicon

- A scalable open platform
- Generalized open process flow
- Collection of chemical recipes
- Brief overview over diverse machines


Goal of LibreSilicon

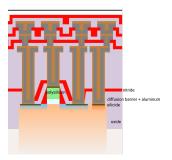
I came, I saw, I made some micro structures:

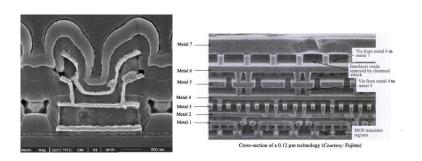

Theoretical CMOS



Cruel reality CMOS

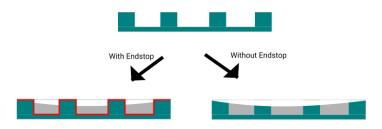
Physical properties

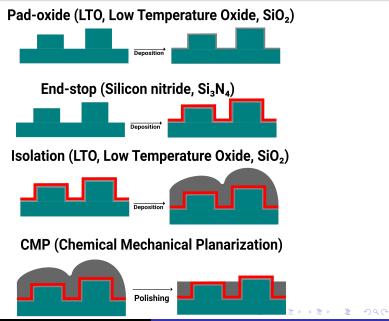

- Capacities
 - Oxide between interconnects (worsened due to high- κ material)
 - Space between bonding wires
 - Gate oxide thickness
 - etc.
- Resistance
 - Contacts: Bonding, interconnect, etc.
 - Channel resistance
 - etc.



Cruel reality CMOS

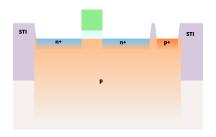
- Many nitride (high- κ) layers for CMP (polishing) endstops
- Silicide in order to reduce sheet resistance
- Nickel on top of silicide as diffusion barrier to Aluminum
- Trench/LOCOS isolation

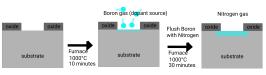



Without planarizing between the metal steps, multilayer interconnects are impractical: planarization is a **must have**

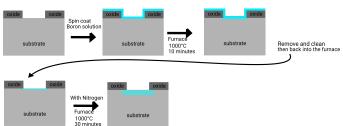
Without endstop we would

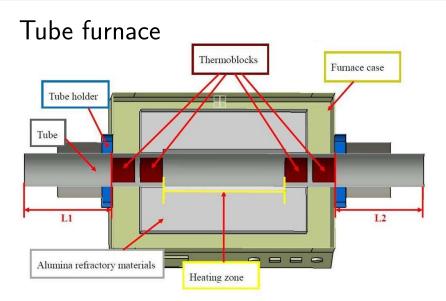
- Destroy interconnect wires
- Cause crystal damage





Putting stuff into the silicon (Doping)

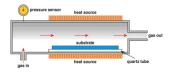

- Silicon is a semiconductor
- Either n (more electrons) or p (more "holes") doping:
 - n: Usually Phosphorus
 - p: Usually Boron
- Doping material source either gas/liquid



Gas predeposition

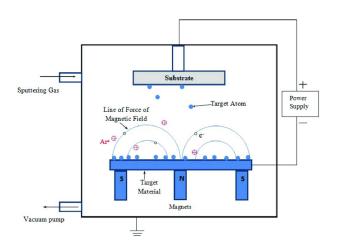
Liquid predeposition


(Industrial scale)


This one is up to 5000 USD

Doping: Implantation

- Same category as the giant tube furnace
- A particle accelerator shooting dopants at the wafer

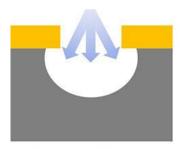


Depositing stuff: Chemical Vapor Deposition (CVD)

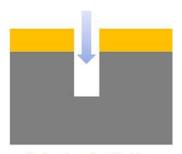
- Can be used to deposit
 - Low Temperature Oxide
 - Polysilicon (With Silane(SiH₄) gas)
 - Silicon Nitride
 - Even metals like Tungsten (with WF₆) and Aluminum (with (AI(CH₂CH(CH₃)₂)₃)
- Can be done with the doping furnace

Depositing stuff: Sputtering

Depositing stuff: Sputtering


Removing stuff aka. Etching

- Wet etching, disadvantage: isotropic etching
 - Hydrofluoric acid: SiO₂, metals
 - TMAH: Silicon and polysilicon
 - KOH: Silicon and polysilicon
 - Piranha solution $(H_2SO_4 + H_2O + H_2O_2)$: Cleaning unreacted metal after silicide formation
 - H₃PO₄: Nitride (Si₃N₄) @ 150°C to 180°C
- Dry etching with plasma and chemical mix, advantages
 - Anisotropics etching (Very steep angles)
 - Fine structures possibles
 - Better depth/etch rate control


Universal: The bigger the area, the higher the etch rate!

Removing stuff aka. Etching

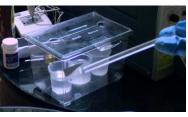
Isotropic Etching
Wet

Anisotropic Etching **Dry**

Removing stuff: Wet Etching

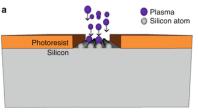
PPE

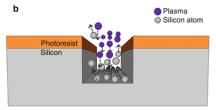
Some of those chemicals are super duper poisonous and deadly! Herewith I told you to wear a PPE, so that you can't sue me in case you die.


Apron

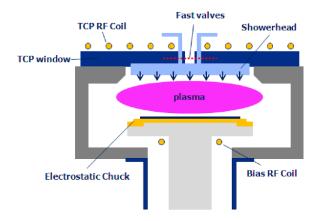
Chemical resistant gloves

Chemical resistant face shield


Removing stuff: Wet Etching

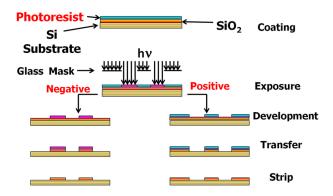


Removing stuff: Dry Etching

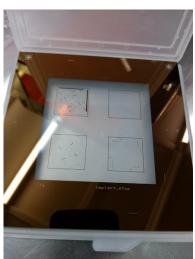

- "reverse sputtering"
- Argon-Chlorine and other gas mixes can be used as gas in order to improve etch rates

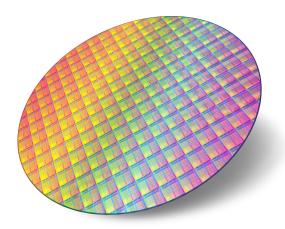
Removing stuff: Dry Etching

Reactive Ion Etcher

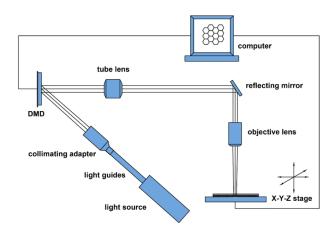

TCP: Transformer Coupled Plasma

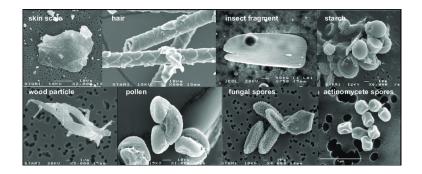
Removing stuff: Dry Etching




Conventional **Photolithography Process**

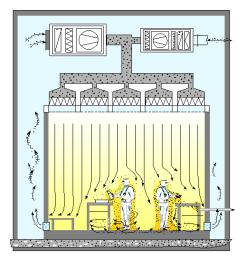
Conventional lithography





Maskless lithography

Sam Zeloof's design



Laminar flow

Shipping container

Glove box

Shopping list

Must have

- CVD+Diffusion furnace
- Sputterer
- Wet station
- PPE
- Lithography system
- Microscope
- Clean room environment

Good to have

- CMP machine
- DRIE etcher

Optional

- RTP (rapid thermal processing) furnace
- Ion implanter

Process Design Kit

- Design rules due to physical constraints
 - Via size
 - Spacing
 - Area sizes
 - etc.
- Components possible to build with your setup
 - Simple stuff: Caps, Resistors, Diodes, Ls (if possible)
 - More complex stuff: ADCs, DACs, etc.
- EDA tools:
 - QFlow
 - OpenLANE
 - Magic

Check out https://pdk.libresilicon.com

Communication

Weekly Mumble sessions:

Every Sunday, 1800 Zulu (UTC)

Server: murmur.libresilicon.com (Port: 64738)

Mailing list:

https://list.libresilicon.com/mailman/listinfo/libresilicon-developers

Direct contact:

leviathan@libresilicon.com

Private donations

BitCoin (BTC):

1Ha4QrFXsjWNJLw2yhchF8bGhTKEnf9bJe

 $\textbf{Address}{:}\ 1 \\ Ha4QrFXsjWNJLw2yhchF8bGhTKEnf9bJe$