
LAVA + OpenQA =
Automated, Continuous
System Testing

Laurence Urhegyi & James Thomas

● Laurence Urhegyi
○ Project Manager
○ laurence.urhegyi@codethink.co.uk

● James Thomas
○ Senior Engineer
○ james.thomas@codethink.co.uk

Introductions

Both have a wealth of
experience in the Automotive
Industry, and are passionate
about FOSS

● Long Term Maintainability
○ What is this and why do we care?

● What is the problem?
○ Upstream / downstream gap for LTM

● How we can help towards solving it?
○ Start testing in upstream directly
○ Heavy automation of testing

● What have we used?
○ LAVA
○ OpenQA

● What we have done?
○ Case study 1: openQA in GNOME upstream
○ Case study 2: LAVA/openQA in kernel testing

● Future plans

Contents

The problem

Why Long Term Maintainability?

Many software systems / devices / products are intended to function over a
long-term lifetime.

They rely on open-source components.

Software complexity is increasing.

More features = more loc = more bugs = more testing is needed.

The cost and complexity of maintaining such systems will continue to grow over
time.

Organisations need to be mature enough to handle increasing complexity and
volume, whilst remaining competitive.

● Well, yes and no…
● Typical scenario:

○ Organisations rely on components (such as the kernel) that are supported
for less time than the lifecycle of their product

○ Backporting from upstream is required for updates
○ Full system upgrades are rare or avoided

● The status quo is to ‘keep systems on life support’

We can do better…

Don’t you mean Long Term Maintenance?

● Systems designed from the outset to:
○ Be as close as upstream as possible

■ Integrate new upstream with minimal overhead, reduce local patch
carrying

○ Have robust deployment mechanisms in place, to roll-back if something
goes wrong (atomic upgrades)

○ Have processes that allow you to know how to repeat a build done in the
past, and also keep track of every component version deployed

○ Have robust testing pipelines that makes you comfortable to update

Long Term Maintainability (again)

● Everyone wants the same thing: stable software, including the latest features, for
the long term

● To achieve this you need to have confidence in your software and confidence in
the software you depend on

● This has to come from testing

Testing, testing, one two, one two

Credit: SoundCloud

https://soundcloud.com/borisduda/testing-the-mic

● Always use the latest!
● http://kroah.com/log/blog/2018/01/06/meltdown-status/
● Makes complete sense… BUT

What do upstream propose?

http://kroah.com/log/blog/2018/01/06/meltdown-status/

● Kernel is support for only 2 / 6 years
● We need to support this product for 10 years
● We do not want to support own own kernel fork
● We are not confident enough upgrading to next kernel version is not going to

cause regressions!

● Not every organisation is willing / able to commit resources for testing that allows
for such long term maintenance

● https://lore.kernel.org/linux-arm-kernel/YCzknUTDytY8gRA8@kroah.com/

What downstream says

https://lore.kernel.org/linux-arm-kernel/YCzknUTDytY8gRA8@kroah.com/

● Testing modern software platforms is extremely complex and time
consuming

● Companies often miss out on the latest fixes and features in Linux, for fear
of the time-consuming manual regression tests required

Mind the gap!

(CC BY-SA 3.0) Wikipedia image

https://commons.wikimedia.org/wiki/File:MindTheGapVictoria.jpg

What we can do to help?

● Increased automation improves robustness and transparaceny of tests
● Reduce manual efforts = increased testing capacity

○ Machines can be utilised 24 hours per day
● Catch major errors more easily, and earlier

○ Eventually increase focus on more complex testing
● This is not new:

https://security.googleblog.com/2021/08/linux-kernel-security-done-right.ht
ml

Automated, continuous embedded
system testing FTW!

https://security.googleblog.com/2021/08/linux-kernel-security-done-right.html
https://security.googleblog.com/2021/08/linux-kernel-security-done-right.html

Intro to the tooling:
LAVA & openQA

● LAVA “continuous integration system for deploying operating systems onto
physical and virtual hardware for running tests”

● Hardware orchestration for physical devices
● Central server that dispatches jobs to clients
● Used by KernelCI (https://linux.kernelci.org/job/) to test new kernel versions

LAVA

https://linux.kernelci.org/job/

● OpenQA for testing *software* (UI)
● Tests based on screenshot comparisons (Needles)
● Central server to view test results, and to dispatch test jobs to workers
● Workers provide a specific machine type (e.g qemu-x86_64)
● Tests performed how the majority of users actually use the software

OpenQA

Help upstream 1:
openQA and GNOME

● Integrated into Gitlab CI pipeline
● Ad-hoc workers using the same build infrastructure, no “pets”, no dedicated test

hardware needed
● Workers only need KVM

CI Integration

● Tests in the same git repo
● Different workers can run different tests if needed
● Needles in a separate repository
● Workers clone needles (OPENQA_NEEDLES_GIT, OPENQA_NEEDLES_SHA)
● Workers then register with OpenQA with a unique machine type (e.g

qemu-x86_64-12345) and start the test run previously built GnomeOS image

CI Integration

CI Integration

CI Integration

Being used already: openqa.gnome.org

Help upstream 2:
LAVA & openQA & Linux kernel

● Testing on hardware rather than emulators
● Utilise the existing KernelCI tests
● OpenQA testing to check for regressions (e.g in the graphics driver)
● Check out the blog post for details of the setup

LAVA and OpenQA

https://www.codethink.co.uk/articles/2021/automated-linux-kernel-testing/

● ToDo

Architecture

It’s being used!

● https://lava.qa.codethink.co.uk
● https://openqa.qa.codethink.co.uk/
● Positive feedback received

https://lore.kernel.org/lkml/CAHk-=wjz+RhR8rr4rAZBPf-mxZXvn2RQe-XTQcL8X+HX
BAFxBA@mail.gmail.com/

https://lava.qa.codethink.co.uk
https://openqa.qa.codethink.co.uk/
https://lore.kernel.org/lkml/CAHk-=wjz+RhR8rr4rAZBPf-mxZXvn2RQe-XTQcL8X+HXBAFxBA@mail.gmail.com/
https://lore.kernel.org/lkml/CAHk-=wjz+RhR8rr4rAZBPf-mxZXvn2RQe-XTQcL8X+HXBAFxBA@mail.gmail.com/

What next?

● More tests!
● Connect to KernelCI APIs
● Better Test/Needle synchronisation between workers and OpenQA
● Board deployment and testing added to Gitlab pipelines
● More backends! (e.g RDP)

Future Work

Thanks for listening!
www.codethink.co.uk

● GNOME testing blog post
● https://openqa.gnome.org/
● https://gitlab.gnome.org/GNOME/gnome-build-meta/-/merge_requests/1251

● Kernel Testing blog post: LAVA + OpenQA
● https://lava.qa.codethink.co.uk
● https://openqa.qa.codethink.co.uk/

Resources

https://www.codethink.co.uk/articles/2021/gnome-with-openqa/
https://openqa.gnome.org/
https://gitlab.gnome.org/GNOME/gnome-build-meta/-/merge_requests/1251
https://www.codethink.co.uk/articles/2021/automated-linux-kernel-testing/
https://lava.qa.codethink.co.uk
https://openqa.qa.codethink.co.uk/

