
Designing a Programming Language for the Desert

Troels Henriksen

DIKU
University of Copenhagen

2022-02-06



Background

Me: Troels Henriksen, researcher at the University of Copenhagen.
Team: Cosmin Oancea, Philip Munksgaard, Robert Schenck, Martin Elsman,

Fritz Henglein, former and future students, Internet people...
Project: Futhark, a purely functional parallel array language.



Futhark, briefly

Fast, flexible ML-like language for high-performance computing.
Compiles to parallel GPU or CPU code.
Aggressively optimising compiler (this is what we publish papers about).

def dotprod [n] (a: [n]f32) (b: [n]f32)
: f32 =
reduce (+) 0 (map2 (*) a b)

def matmul [n][m][p] (a: [n][m]f32) (b: [m][p]f32)
: [n][p]f32 =
map (\a_row -> map (dotprod a_row) (transpose b)) a

Not intended for full applications, only the small performance-critical parts.
This talk is not about the language or compiler itself, but general principles
we’ve used for designing an obscure language.



Building a programming language takes hubris

The average user count over all programming languages is close to zero.
I Language designers know this.
I Obviously their ambitions go beyond this.

Most languages are designed with the hope of great success!

General-purpose or with a very large domain.
Must scale to large teams, large programs.
I Will have and need complex build tools, debuggers, package managers, etc.
I Might even have one of those sufficiently smart compilers!

Most users will have the language as their main language.
I Time and motivation to learn many details.

Meant for a resource-rich environment.
I Not about machine resources!

Companies think like this when pushing a new language, but hobbyists often do too.



Building a programming language takes hubris

The average user count over all programming languages is close to zero.
I Language designers know this.
I Obviously their ambitions go beyond this.

Most languages are designed with the hope of great success!

General-purpose or with a very large domain.
Must scale to large teams, large programs.
I Will have and need complex build tools, debuggers, package managers, etc.
I Might even have one of those sufficiently smart compilers!

Most users will have the language as their main language.
I Time and motivation to learn many details.

Meant for a resource-rich environment.
I Not about machine resources!

Companies think like this when pushing a new language, but hobbyists often do too.



Some programming languages built for success

Rust Cone C3 Inko Crystal MANOOL
Myrddin Go Raku Java Mercury Swift

SML OCaml PHP Clean Racket Erlang
ReasonML Smalltalk Groovy D Dart Oberon

C# Plasma Zig PureScript JavaScript Haskell
Julia R F# Clojure Ruby Scala
Eiffel Nim Elixir Odin Kotlin Solidity

and so on...

Bold ones may now have enough resources for “sufficient tooling” to exist.
I Some always had due to corporate support (Swift).
I Others because they became popular organically (Rust).



So most languages are intended to be this

https://commons.wikimedia.org/wiki/File:Bengal_tiger_(Panthera_tigris_tigris)_female_3_crop.jpg

Bengal tiger

https://commons.wikimedia.org/wiki/File:Bengal_tiger_(Panthera_tigris_tigris)_female_3_crop.jpg


What about Futhark?

Domain: High-performance parallel number crunching.
Users: Typically programmers who mostly use some other language and want

to speed up some part of their program.
Usage: Will be a guest in a larger code-base not written in Futhark.

This is not a resource-rich environment!
Even in the (improbable!) best case of total dominance in its domain, Futhark will
never have many users or many resources behind its development.



What about Futhark?

Domain: High-performance parallel number crunching.
Users: Typically programmers who mostly use some other language and want

to speed up some part of their program.
Usage: Will be a guest in a larger code-base not written in Futhark.

This is not a resource-rich environment!
Even in the (improbable!) best case of total dominance in its domain, Futhark will
never have many users or many resources behind its development.



So this is Futhark

https://commons.wikimedia.org/wiki/File:Desert_Hedgehog.png

Desert hedgehog

https://commons.wikimedia.org/wiki/File:Desert_Hedgehog.png


Language design for the desert

Our approach is a kind of conceptual minimalism.

Minimize things that require ongoing maintenance.
Minimize implicit behaviour.
Minimize degrees of freedom.
Minimize novelty.
Do just a few things, so that you can do them well.
Say no to things that are good ideas in most languages.

Let’s look at some concrete examples.



Language design for the desert

Our approach is a kind of conceptual minimalism.

Minimize things that require ongoing maintenance.
Minimize implicit behaviour.
Minimize degrees of freedom.
Minimize novelty.
Do just a few things, so that you can do them well.
Say no to things that are good ideas in most languages.

Let’s look at some concrete examples.



Build systems and multi-file programs

Nobody enjoys learning about build systems or import mechanisms.

While Futhark is for small programs, we still want to support multi-file programs.

Principle

The easiest thing to learn is something you already know.



File imports in Futhark

import "foo/bar"

Imports the file foo/bar.fut relative to the importing file.
All uses of code in other files must be through explicit import.
Pro: Just normal filepath semantics!
Downside: files have no canonical name.

Example of importing the bolded file

main.fut

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . import "foo/bar"

foo/
bar.fut
baz.fut

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .import "bar"

quux/
bar.fut
baz.fut

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . import "../foo/bar"



File imports in Futhark

import "foo/bar"

Imports the file foo/bar.fut relative to the importing file.
All uses of code in other files must be through explicit import.
Pro: Just normal filepath semantics!
Downside: files have no canonical name.

Example of importing the bolded file

main.fut

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . import "foo/bar"

foo/
bar.fut
baz.fut

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .import "bar"

quux/
bar.fut
baz.fut

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . import "../foo/bar"



File imports in Futhark

import "foo/bar"

Imports the file foo/bar.fut relative to the importing file.
All uses of code in other files must be through explicit import.
Pro: Just normal filepath semantics!
Downside: files have no canonical name.

Example of importing the bolded file

main.fut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . import "foo/bar"
foo/

bar.fut
baz.fut

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .import "bar"

quux/
bar.fut
baz.fut

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . import "../foo/bar"



File imports in Futhark

import "foo/bar"

Imports the file foo/bar.fut relative to the importing file.
All uses of code in other files must be through explicit import.
Pro: Just normal filepath semantics!
Downside: files have no canonical name.

Example of importing the bolded file

main.fut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . import "foo/bar"
foo/

bar.fut
baz.fut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .import "bar"

quux/
bar.fut
baz.fut

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . import "../foo/bar"



File imports in Futhark

import "foo/bar"

Imports the file foo/bar.fut relative to the importing file.
All uses of code in other files must be through explicit import.
Pro: Just normal filepath semantics!
Downside: files have no canonical name.

Example of importing the bolded file

main.fut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . import "foo/bar"
foo/

bar.fut
baz.fut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .import "bar"

quux/
bar.fut
baz.fut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . import "../foo/bar"



Why is this the right choice for Futhark?
Not textual inclusion as C’s #include.
I Each file must still be syntax- and type-correct by itself.

No “search path” set by some build tool config file.
Compilation is just $ futhark cuda main.fut .

Tooling advantage

If a Futhark program can compile as a whole, then each constituent file can also
be used directly as a “compilation root” by the compiler.
Makes it super easy to write simple yet functional tools:
I Emacs mode can just pass whatever file is open to the compiler to get type

errors—no need to think about any build system (there is none).
I “Go to definition” works with zero configuration, too.

Definitely not the right choice for every language!
I No notion of “shared libraries”, since all paths are relative to each file.
I Package installation must put files in a known and accessible location.



Why is this the right choice for Futhark?
Not textual inclusion as C’s #include.
I Each file must still be syntax- and type-correct by itself.

No “search path” set by some build tool config file.
Compilation is just $ futhark cuda main.fut .

Tooling advantage

If a Futhark program can compile as a whole, then each constituent file can also
be used directly as a “compilation root” by the compiler.
Makes it super easy to write simple yet functional tools:
I Emacs mode can just pass whatever file is open to the compiler to get type

errors—no need to think about any build system (there is none).
I “Go to definition” works with zero configuration, too.

Definitely not the right choice for every language!
I No notion of “shared libraries”, since all paths are relative to each file.
I Package installation must put files in a known and accessible location.



Why is this the right choice for Futhark?
Not textual inclusion as C’s #include.
I Each file must still be syntax- and type-correct by itself.

No “search path” set by some build tool config file.
Compilation is just $ futhark cuda main.fut .

Tooling advantage

If a Futhark program can compile as a whole, then each constituent file can also
be used directly as a “compilation root” by the compiler.
Makes it super easy to write simple yet functional tools:
I Emacs mode can just pass whatever file is open to the compiler to get type

errors—no need to think about any build system (there is none).
I “Go to definition” works with zero configuration, too.

Definitely not the right choice for every language!
I No notion of “shared libraries”, since all paths are relative to each file.
I Package installation must put files in a known and accessible location.



So let’s talk package management

Language package managers solve tricky problems.

How do we find packages and make them available to the compiler?
How do we deal with conflicting version bounds in dependencies?

This can get really complicated.

Central registry of packages.
I We need a server... but desert survival doesn’t leave much time for server

management.
Version bounds on dependencies, often both upper and lower.
I Requires an NP-complete solver.

I Very difficult to explain conflicts to the user in a comprehensible way!
I Rust’s solver in cargo is thousands of LOC.



So let’s talk package management

Language package managers solve tricky problems.

How do we find packages and make them available to the compiler?
How do we deal with conflicting version bounds in dependencies?

This can get really complicated.

Central registry of packages.
I We need a server... but desert survival doesn’t leave much time for server

management.
Version bounds on dependencies, often both upper and lower.
I Requires an NP-complete solver.

I Very difficult to explain conflicts to the user in a comprehensible way!
I Rust’s solver in cargo is thousands of LOC.



futhark pkg: the simplest thing that could possibly work

futhark pkg is not much more than a glorified file downloader.

Add dependency on some library to futhark.pkg file1:

$ futhark pkg add github.com/diku-dk/sorts

Download dependencies to lib/ directory:

$ futhark pkg sync

1Currently packages must be GitHub or GitLab repositories, but this is not a fundamental part of the
design—we just need a way to get a list of available versions.



futhark pkg: the simplest thing that could possibly work

futhark pkg is not much more than a glorified file downloader.

Add dependency on some library to futhark.pkg file1:

$ futhark pkg add github.com/diku-dk/sorts

Download dependencies to lib/ directory:

$ futhark pkg sync

1Currently packages must be GitHub or GitLab repositories, but this is not a fundamental part of the
design—we just need a way to get a list of available versions.



The lib/ directory after futhark pkg sync

$ tree lib
lib

github.com
diku-dk

segmented
segmented.fut
segmented_tests.fut

sorts
bubble_sort.fut
bubble_sort_tests.fut
insertion_sort.fut
insertion_sort_tests.fut
merge_sort.fut
merge_sort_tests.fut
quick_sort.fut
quick_sort_test.fut
radix_sort.fut
radix_sort_tests.fut



Package versions

Versions are git tags:

$ git tag vX.Y.Z
$ git push --tags

Packages can depend on minimum versions of other packages.
futhark pkg must also downloads dependencies-of-dependencies.



Version resolution

Ross Cox from Go came up with a really simple system.

The Minimum Package Version (MPV) Algorithm

Use the lowest version of a dependency that satisfies all constraints.
Constraints on upper bounds not possible.
Breaking backwards compatibility counts as an entirely distinct package
I The SemVer major version number is part of the package “name”.

Con: Breaking compatibility in small ways or accidentally is very awkward.
Pro: Go uses it, so it is not fatally flawed.
Pro: Version solving is reproducible without freeze files.
Pro: Only way solving can fail is if a package does not exist.
Pro: Implementation is extremely simple.



Version resolution

Ross Cox from Go came up with a really simple system.

The Minimum Package Version (MPV) Algorithm

Use the lowest version of a dependency that satisfies all constraints.
Constraints on upper bounds not possible.
Breaking backwards compatibility counts as an entirely distinct package
I The SemVer major version number is part of the package “name”.

Con: Breaking compatibility in small ways or accidentally is very awkward.
Pro: Go uses it, so it is not fatally flawed.
Pro: Version solving is reproducible without freeze files.
Pro: Only way solving can fail is if a package does not exist.
Pro: Implementation is extremely simple.



The MPV algorithm in Haskell

doSolveDeps :: PkgRevDeps -> SolveM ()
doSolveDeps (PkgRevDeps deps) = mapM_ add $ M.toList deps

where
add (p, (v, maybe_h)) = do
RoughBuildList l <- get
case M.lookup p l of

-- Already satisfied?
Just (cur_v, _) | v <= cur_v -> return ()
-- No; add ’p’ and its dependencies.
_ -> do

PkgRevDeps p_deps <- getDeps p v maybe_h
put $ RoughBuildList $ M.insert p (v, M.keys p_deps) l
mapM_ add $ M.toList p_deps



Not Futhark-specific

The futhark pkg design was also used for an SML package manager:

https://github.com/diku-dk/smlpkg

An easy-to-implement design for any minimal language (1506 LOC of SML in total).

Design details

https://futhark-lang.org/blog/
2018-07-20-the-future-futhark-package-manager.html

https://futhark-lang.org/blog/
2018-08-03-the-present-futhark-package-manager.html

https://github.com/diku-dk/smlpkg
https://futhark-lang.org/blog/2018-07-20-the-future-futhark-package-manager.html
https://futhark-lang.org/blog/2018-07-20-the-future-futhark-package-manager.html
https://futhark-lang.org/blog/2018-08-03-the-present-futhark-package-manager.html
https://futhark-lang.org/blog/2018-08-03-the-present-futhark-package-manager.html


Other examples

Use a familiar programming model:
I Futhark is basically a subset of “common” functional concepts: map, reduce, scan,

higher-order functions, type inference, etc.
I Language novelty only in very select places.
I . . .but lots of novelty in the compiler itself.

Support very few compiler options:
I Cause combinatory explosion of code paths—difficult to test.
I Especially options that affect code generation or optimisation.
I Fun game: see if the Linux kernel can compile correctly using randomly selected

optimisation options for GCC.



Other examples

Use a familiar programming model:
I Futhark is basically a subset of “common” functional concepts: map, reduce, scan,

higher-order functions, type inference, etc.
I Language novelty only in very select places.
I . . .but lots of novelty in the compiler itself.

Support very few compiler options:
I Cause combinatory explosion of code paths—difficult to test.
I Especially options that affect code generation or optimisation.
I Fun game: see if the Linux kernel can compile correctly using randomly selected

optimisation options for GCC.



Conclusions

Designing a programming language for the desert means coping with persistent
scarcity of both users and maintainers.

Main trick: Keep it minimal!
I This means making choices that you would not make for a popular

general-purpose language.
Realise that there are some things you just will not be able to afford.
I You might never have that advanced Language Server implementation.
I So how can you design your language so someone can write a reliable

go-to-definition tool in an afternoon?

And why not go for a trip in the desert yourself?

https://futhark-lang.org

https://futhark-lang.org


Conclusions

Designing a programming language for the desert means coping with persistent
scarcity of both users and maintainers.
Main trick: Keep it minimal!
I This means making choices that you would not make for a popular

general-purpose language.

Realise that there are some things you just will not be able to afford.
I You might never have that advanced Language Server implementation.
I So how can you design your language so someone can write a reliable

go-to-definition tool in an afternoon?

And why not go for a trip in the desert yourself?

https://futhark-lang.org

https://futhark-lang.org


Conclusions

Designing a programming language for the desert means coping with persistent
scarcity of both users and maintainers.
Main trick: Keep it minimal!
I This means making choices that you would not make for a popular

general-purpose language.
Realise that there are some things you just will not be able to afford.
I You might never have that advanced Language Server implementation.
I So how can you design your language so someone can write a reliable

go-to-definition tool in an afternoon?

And why not go for a trip in the desert yourself?

https://futhark-lang.org

https://futhark-lang.org


Conclusions

Designing a programming language for the desert means coping with persistent
scarcity of both users and maintainers.
Main trick: Keep it minimal!
I This means making choices that you would not make for a popular

general-purpose language.
Realise that there are some things you just will not be able to afford.
I You might never have that advanced Language Server implementation.
I So how can you design your language so someone can write a reliable

go-to-definition tool in an afternoon?

And why not go for a trip in the desert yourself?

https://futhark-lang.org

https://futhark-lang.org

