Kubernetes networking:
Is there a cheetah within your Calico?

Even faster Kubernetes clusters with Calico, VPP & memif

Nathan Skrzypczak, Cisco Systems

Chris Tomkins, Tigera
FOSDEM 2022 Q

Your Speakers Today:

e Nathan Skrzypczak - Software Engineer
@ Cisco - Calico/VPP integration contributor.
e Biking and hiking enthusiast - even
sea-kayaking at times
e And afrench accent despite the name

.lIt.lIl.Eé
CISCO -Hab.io

Your Speakers Today:

e Chris Tomkins - Lead Developer Advocate @
Tigera (Project Calico)
e Today's obsession:
Japanese on Duolingo; but progress is not quick!
e I'm never without music; try Rustie.

e I'm always looking to learn and share. Let's connect! -

TIGERA

What is Calico?

e Open-source Kubernetes networking and
network policy

Kubernetes pods, nodes, VMs, and legacy workloads
Rich network policy APIs

Battle-tested: deployed in production at scale
Support for multiple data planes

Qontrol plane (network knowledge)

Detailed
Network Knowledge

Full Routing...
Full Policy...

' N
\ [/
Detailed
Network Knowledge
ull Routing...

« i FUll Policy...

Detailed
Network Knowledge

Full Routing...

A\

Data plane (bat videos)

o

https://app.diagrams.net/?page-id=5nzQAZ5ruvz_yH71shAr&scale=auto#G1aIDXas8c2BVelNAs3YvPUBu98AVrkPk0

Control Plane/Data Plane

e A data planeis the component of a networking
device that transports user data. Calico offers:
o Linuxiptables:
m Heavily battle tested

m Good performance
m Great compatibility and wide support

o Windows Host Networking Service:
m Windows containers can be deployed and secured
m Works in any cloud computing provider or on-premises
o Linux eBPF:
m Scales to higher throughput/uses less CPU per Gigabit
m Reduces first packet latency to services
] Predserves external client source IP addresses all the way to the
0
n Eupports DSR (Direct Server Return) for better efficiency
e And...VPP!

22

What is VPP?

e Fast, open-source userspace networking
dataplane https://fd.io/
e Feature-rich L2/L3/L4 networking

Tunneling, NAT, ACL, crypto, TCP, Quic,... v'avf_inpm‘@ 1111
Easily extensible through plugins <
Supports virtual and physical interfaces %

Fast APl >200k updates/second
Highly optimized for performance:
vectorization, cache efficiency

e Multi-architecture: x86, ARM

https://fd.io/

Calico/VPP integration

e VPP dataplane option for Calico

o Deployed on all nodes as a DaemonSet
O Tra nspa rent for Users (e-g. Operator) icated configmap for VPP settings

onfigMap

e (alico control plane configured to drive VPP sttt

e prefix. We currently cannot retrieve this from the API,
be manually configured

o Optimized NAT plugin for service load balancing Service prerics 10..0.0/12

ame of VPP's physical interface
erface: ethl

O SpeCifiC plugin for effiCient Calico p0|iCieS # Configures how VPP grabs the physical interface

- : will select the fastest driver among those supported for this interface

1 H H 1 . = : use the native AVF driver
. O p I l I l Ize O r CO n a I n e r e nVI ro n l I le n S. - vi : use the native virtio driver (requires hugepages)
- AF_XDP sock family (require at least kernel 5.4)
- a AF_PACKET sock family (slow but failsafe)
t configure connectivity

o Interrupt mode, SCHED_RR scheduling

plate for VPP.
ol

o Lightweight (no hugepages, no dpdk, ...) J rogzenn
cli-listen /var/run/vpp/cli.sock

pidfile /run/vpp/vpp.pid

o GRO / GSO support for container interfaces

How does it work ?

e VPP inserts itself between the host and the network

o Uplink consumed with optimised drivers :
DPDK / native drivers / AF_XDP
o Pure layer 3 network model (no ARP/mac address in the pods)

Regular Calico Calico/VPP
Host Pods
Pods BGP, kubelet, felix...
veth interfaces _’ I tun interfaces
Host
BGP, kubelet, felix + VPP Routing, Load balancing, Policies...
Routing, Load balancing, Policies

I uplink interface I uplink interface

L}

Why do this ?

- Adding dataplane functionalities
(Maglev LB, srv6, ...)

- Extending the network (e.g. multi-net)

L}

Why do this ?

- Adding dataplane functionalities
(Maglev LB, srv6, ...)

- Extending the network (e.g. multi-net)

- Go Faster!!

L}

Optimizing the data path

Applications usually consume packets
from the kernel with Socket APIs.

Standard for apps

e But goes through the kernel

e Socket APIs were not designed for

performance levels of modern apps
e Slower network (TCP, pps...)

& crypto staclf (hence GSO)
e Does two copies (VPP & socket) App#1 sockets !
Pod netns VPP
M
Sackel AFls tun interface
+ 6 uplink interface
Kernel LT (irtio) I

L}

Optimizing the data path

Going straight from VPP to the application ?

packets----.

.,
.

.
.
1
1
v
\
.

Pod netns
e If the application handles g
packets : memif interfaces gomemif / libmemif
VPP / DPDK
App
Pod netns

e Ifthe application

terminates L4+ protocols : VCL‘I'b
VPP host stack '

App

protocol , --
termination

VPP

L}

Optimizing the data path

Going straight from VPP to the application ?

If the application handles
packets: memif interfaces

If the application terminates L4+
connections: VPP host stack
Exposed via pod annotations

Full userspace networking
Zero copy APIs
Regular sockets still work (e.g. DNS)

' . VCL ; i
App #3 libvel _[session]’-’-_’-,[routing]\\
gomemitVPP/ | | memit | ./ '
APP#2 | ibmemit/DPDK [poicis |
App#1 sockets ' :
Pod netns VPP
SOCk(it ARS tun interface
. ¢ uplink interface
Kernel L E (vlitio) I

L}

Small packets - Calico/linux

Pod netns
Pods | |
ifpps
TT] s T-rex
Host 1: HARCopIoXY (traffic generator)
I uplink interface N P [iptab'eS/ist] -
. } kernel
Regular Calico k8s node & Calico/VPP Traffic generator node

2-node Skylake@3.2Ghz (baremetal) - ubuntu 20.04 - XL710, 40G NICs &22

Small packets - Calico/VPP [virtio]

Calico/VPP Pod netns o S .

[routing] [services]
Host Pods Client VPP K ==
BGP, kubelet, felx... ! l policies I
4 \ T-rex

]
i VPP : (traffic generator)
VPP Routing, Load balancing, Policies... # 7

] uplink interface = (VIrtIO) ---- kernel

k8s node & Calico/VPP Traffic generator node

2-node Skylake@3.2Ghz (baremetal) - ubuntu 20.04 - XL710, 40G NICs &22

Small packets - Calico/VPP [memif]

Calico/VPP Pod netns e S .

[routing] [services]
Host Pods Client VPP H o
BGP, kubelet,felx... e l pOlICIeS I
- \ T-rex

i (traffic generator)

VPP Routing, Load balancing, Policies...

VPP

] uplink interface

kernel

k8s node & Calico/VPP Traffic generator node

2-node Skylake@3.2Ghz (baremetal) - ubuntu 20.04 - XL710, 40G NICs &22

Small, but fast packets !

64B half-duplex Mpps

B linux B 1w 2w [4w

40.0

e UDP Packets (64B)
300 e Half duplex, measuring rx
packets per second
e VPP runs with one main
thread and the given number

16.9 of workers
136

20.0 217

Mpps

12.4
10.0

Scales linearly with VPP workers
ni mi mi ServicelP cost ~5%
0.0

10k 100k im

number of flows

And throughput ?

300B UDP Throughput (40G link)
| v B 2w 4w

40.0

348 353 e UDP Packets (300B)
- e Half duplex, measuring rx
| - throughput

e VPP runs with one main
thread and the given number
of workers

20.0

Gbps Half-duplex Throughput

e With bigger packets, the link
quickly becomes the
B bottleneck

0.0

100k

e o owe e Linux around 300Mbps

And TCP ?

An envoy+VCL story

Endpoint - Envoy & Calico/linux

Benchmarking the performance of envoy
running in a k8s Cluster

- wrk (traffic generator) to nginx

- 64B requests, measuring RPS

Pod netns

Envoy
Proxy

[kube-proxy]

S .o

.

kernel

i | iptables |--

k8s node & Calico/VPP

wrk

i
HTTP requests

nginx

Traffic generator node

L}

Endpoint - Envoy & Calico/VPP

We can use VPP as dataplane, but still run

envoy unmodified

Pod netns T N
| routing' | E———]
E?;g;,’ [session][policies]

k8s node & Calico/VPP

wrk

A
HTTP requests

VPP \ “ o p-);d)fiéa‘by envoy

Y

nginx

Traffic generator node

L}

Endpoint - Envoy & Calico/VPP

Running Envoy with VCL support
Images envoyproxy/envoy-contrib:v1.21.0

Pod netns Pt e

[Jouting][se\rvi‘ces]
Envoy [session][lic
Proxy —— policies]

VPP

kernel

k8s node & Calico/VPP

wrk

A
HTTP requests

) m o F—);(;X]é‘d\by envoy

Y

nginx

Traffic generator node

L}

https://www.envoyproxy.io/docs/envoy/latest/configuration/other_features/vcl

[wrksenvoysnginx] requests/s

Requests / sec (1k)

Run kitty,

250.0

150.0

100.0

0.0

linux

run !

mv B 2w

eBPF

5w W 10w

VPP/tun

VPP/VCL

200.3

Measuring requests per second
TCP requests with wrk,

30 threads, 300 connections

4 Nginx workers, 64B payload
VPP 1 worker /1 main

Scaling number per Envoy
—concurrency=1..10

Comparing RPS performance is tricky

Linux network processing is done on
the same worker as envoy uses, VPP
uses an extra worker for the
dataplane work.

Run Kitty, run'!

[wrksenvoysnginx] average latencies
miv B 2w 5w i 10w

25.0

e Measuring requests per
second
e TCP requests with wrk,
30 threads, 300 connections
e 4 Nginx workers, 64B payload
e Scaling number per Envoy
—concurrency=1..10

Latency (ms)

Latencies improves with more
workers.

linux eBPF VPP/tun VPP/VCL

Run Kitty, run'!

CPU usage (%)

55

50

45

40

35

30

25

20

15

10

CPU usage per Kreq/s

CalicoVPPVCL —a—

Calico/VPP tun —=—
Calico/Linux
Calico/eBPF

>

—

100 120
Request/s (1k)

140

160 180 200

220

e Measuring requests per
second
e TCP requests with wrk,
30 threads, 300 connections
e 4 Nginx workers, 64B payload
e Scaling number per Envoy
—concurrency=1..10

VPP/VCL with 5 envoy workers, and
one VPP reaches 100k RPS, same
as envoy/linux with 10 workers.

Wrapping up

e New VPP-based userspace dataplane option for Calico

e memif support offers a code path which can handle the incredible
performance levels we all expect from modern apps.

e Complements Calico’s workload protection with incredible WireGuard
performance to protect data-in-flight in edge environments

e Additional advanced experimental feature support such as VCL and QUIC
allowing you to stay ahead of the curve

L}

Wrapping up

e Beta status expected in Calico v3.22 - currently anticipated late January, so
it could well be live as you see this!

e Contributions welcome!
@ https://github.com/projectcalico/vpp-dataplane

e Join us on the Calico Users Slack #VPP channel
@ https://calicousers.slack.com/archives/C017220EXU1

L}

https://github.com/projectcalico/vpp-dataplane
https://calicousers.slack.com/archives/C017220EXU1

