
Advanced Unit Testing in
Hedron

Julian Stecklina

Web: https://x86.lol/
Podcast: https://syslog.show/
Matrix @js:ukvly.org
Twitter: @blitzclone

https://x86.lol/
https://syslog.show/
https://matrix.to/#/@js:ukvly.org
https://twitter.com/blitzclone

What’s Hedron?

Microhypervisor with capability-based security model written in C++

Focus on:

- Simplicity, readability, testability.
- x86-64 virtualization

Lives on Github developed by Cyberus Technology

Fork of NOVA microhypervisor.

Check out https://www.cyberus-technology.de/blog.html to learn more.

Not going to talk about any of this! 😅

https://github.com/cyberus-technology/hedron
https://www.cyberus-technology.de/
https://hypervisor.org/
https://www.cyberus-technology.de/blog.html

Why (Unit) Test?

A healthy software project

- is easy to change by multiple people
- with confidence that it doesn’t break.

Good unit test coverage helps:

- Tests can run anywhere,
- developer feedback in seconds,
- sanitizers (UBSAN, ASAN, …)!

Kernels Are Not Doing Well

OS kernels are particularly hostile:

- strange programming environments
- interaction with hardware
- mindset / lack of education

Result: Usually extremely poor (unit) tests.

Let’s spread some testing ideas!

Example: Page Table Manipulation

Needed to modify Hedron’s page table. No existing tests!

- Important piece of code in a microkernel.
- Bugs are extremely hard to debug.

How to get good test coverage? We decided to redesign it.

Recap: Address Spaces

Virtual Memory

Frame

Frame

Frame

Frame

Frame

Frame

TablePage
Table

Physical Memory

0x11000

0x12000

Code

Code

0x20000

0x21000

Data

Data
0x2bca3000

Recap: Page Tables (x86-64)

0xFFFF8C1A80401023 -> 0x80401023

L3

0x001

Offset

0x023

L2

0x002

L1

0x06a

L0

0x178

129

Intel SDM Vol. 3 Ch. 4

999

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

Unit Testing Challenges

1. Code uses kernel-internal APIs.

Prevents us from compiling the code for Linux.

2. CPU reads page tables while they are being modified.

Checking result when everything is done: Insufficient!

Updating Page Tables (x86-64)

…

0x8000 RW 👉

…

…

0x80000000 RW ✅

…

…

…

…

0x1000 0x8000 0xC000 0x9000

Let’s write protect a 4K mapping…Page Table
Base Register

Entries map 512G Entries map 1G Entries map 2M Entries map 4K

0xC000 RW 👉

0x80000000 RW
✅

0x80400000 RW
✅

0x80200000 RW
✅

0x9000 RW 👉

0x8fe00000 RW
✅

0x80000000 RW
✅

0x80001000 RW
✅

0x801fe000 RW
✅

0x80401023 R
✅

Idea: Record Observable Side Effects

In unit tests, we want to:

- Record all visible side-effects while the code is running.
- Check all transient states for validity.

Applying Policy-Based Design

Taking It Further

We can use this technique to test other properties:

- Are page tables disconnected before they are deallocated?
- Do we handle atomic-compare-exchange failures?
- Do we read/write memory exactly as often as needed?
- …

We only started to tap the potential.

C++ 20 Concepts: Better Error Messages

Incompatible policy classes lead to hard to read C++ error messages…

Somewhat similar to traits in Rust.

Summary

We re-wrote Hedron’s page table code:

- after deciding what we want to test,
- using policy-based design,
- to unit test otherwise hard-to-test properties,
- by recording all observable side effects of operations,
- with a concept that’s applicable to C++ and Rust.

Let’s improve kernel testing: Please share your test stories!

https://en.wikipedia.org/wiki/Modern_C%2B%2B_Design

https://cyberus-technology.de/blog.html

https://github.com/cyberus-technology

@CyberusTech

Personal

https://x86.lol/

https://github.com/blitz

Podcast about Systems Topics:
https://syslog.show/

@blitzclone @js:ukvly.org

@ukvly #uvkly:ukvly.org

https://cyberus-technology.de/blog.html
https://github.com/cyberus-technology
https://twitter.com/cyberustech
https://x86.lol/
https://github.com/blitz
https://syslog.show/
https://twitter.com/blitzclone
https://matrix.to/#/@js:ukvly.org
https://twitter.com/ukvly

