A Raku Gramwmar for
Navigation Lights

code walkthrough with live examples

pbsteve.com

One feature that sets rakuv apart from other programwming languages is the builf-in
Gramwmar parser syntax. This provides a concise, clean and extensible tool for
parsing text and triggering Actions according to the content. Navigation aids such
as buoys and markers sport flashing lights with characteristics such as color;
duration, phase, occulting, speed, height, visibility and so on are represented on
navigation charts by way of a short code e.g. Fl(4)15s37m28M .

This talk aims to show how raku provides the average coder (me) with a new
practical alternative to Regexs and/or specialist recursive descent modules. It should
illustrate how the combination of the raku built-in 00 system and Grammars/
Actions keeps the problem domain / problclzm solution in focus via code and visual
examples.

pbsteve.com

Physics::M%um & 00

Measure

Nav:: Nav::
Position Vector

Nav::
Velocity

),C0M

Physics::Navigation

* Jupyter Notebook Examples....
https:/qgithub.com/p6steve/raku-Yacht-Navigation

* To launch with Binder:

launch | binder

* click the badge above, sometimes the server will be built and takes about 60
secs to launch

* if you are unlucky, a new server build can take 30-40sec, please be patient
(show logs to see the action)

pbsteve.com

Cardinal Buoys
One interesting set of buoys - often used to indicate hazards - is the Cardinal Buoys.
Four cardinal buoys are defined, North, South, East and West. These can be used to surround a hazard, placed so that:

e North Cardinal Mark is sited to the North of the Hazard - keep to the North of it
e South Cardinal Mark is sited to the South of the Hazard - keep to the South of it
e East Cardinal Mark is sited to the East of the Hazard - keep to the East of it

e West Cardinal Mark is sited to the West of the Hazard - keep to the West of it

Simples!

i

Hazard

<4<

Define our Buoys

my $ncm = NorthCardinal.new(position => $pos-A); say "$ncm";

NorthCardinal Buoy at (51°30.432°'N, 000°7.158'W)
Colours:Black,Yellow. Shapes:Up,Up. Outline:None. Pattern:Layers.
Flashes quickly

my $wcm = WestCardinal.new(position => $pos-B); say "$wcm";

WestCardinal Buoy at (51°30.324°'N, 000°7.656 W)
Colours:Yellow,Black,Yellow. Shapes:Down,Up. Outline:None. Pattern:Layers.
Flashes quickly 9 times every 15 seconds

my $ecm = EastCardinal.new(position => $pos-C); say "$ecm";

EastCardinal Buoy at (51°30.324°'N, 000°6.66 W)
Colours:Black,Yellow,Black. Shapes:Up,Down. Outline:None. Pattern:Layers.
Flashes quickly 3 times every 10 seconds

my $scm = SouthCardinal.new(position => $pos-D); say "$scm";

SouthCardinal Buoy at (51°30.216°N, 000°7.656 W)
Colours:Yellow,Black. Shapes:Down,Down. Qutline:None. Pattern:Layers.
Flashes quickly 6 times plus one long every 15 seconds

A couple of useful mnemonics are:

e the ECM top marks look like an "Easter Egg"
e the WCM top marks look like a "W" sideways on

Let's Pick One

my $cm := $ecm; say $cm.position.Str;
(51°30.324'N, 000°6.66 W)

$cm does BuoyShaped;
"$cm".say;

my $drawing = Drawing.new(elements => $cm.elements);
$drawing.serialize.say;

EastCardinal+{BuoyShaped} Buoy at (51°30.324'N, 000°6.66 W)
Colours:Black,Yellow,Black. Shapes:Up,Down. Outline:None. Pattern:Layers.
Flashes quickly 3 times every 10 seconds

A
En

Light Characteristic

A light characteristic is a graphic and text description of a navigational light sequence or colour displayed on a nautical chart.

Description
Alternating

Fixed

Flashing

Group flashing
Occulting

Group occulting
Quick flashing
Very quick flashing
|Isophase

Morse

Characteristic

£l

Chart Abbreviation
Alt. RW.G.

F

FI.

Gp Fl.(2)
Occ.

Gp Occ(3)
Qk.FI.
V.QKk.FI.
|SO.
Mo.(letter)

my $cm := $scm;
say $cm.light-svg.”name;
say $cm.light-svg.Str;

Physics::Navigation::SVG—-animation

duration is 15;

pattern is <#fff #000 #fff #000 #fff #000 #fff #000 #fff #000 #fff #000 #000 #000 #0000 #fff #Tff #fff #fff #fff #Fff #000 #000 #000 #¢
#000 #000 #000 #000 #000>;

...and Draw It

$cm does LightShaped;
"$cm".say;

my $drawing = Drawing.new(elements => $cm.elements);
$drawing.serialize.say;

SouthCardinal+{LightShaped} Buoy at (51°30.324'N, 000°6.66 W)
Colours:Yellow,Black. Shapes:Down,Down. Outline:None. Pattern:Layers.
Flashes quickly 6 times plus one long every 15 seconds

TOP

kind
veryquick
quick
flashing
fixed
isophase
occulting

group
colour
extra
period
height
visibility {
digits

A e A oK ke A A A

-
-
—

o oy ey

TOP(

.push: >.made
.push: >.made
.push: >.made
.push: >.made
.push: >.made
.push: >.made
.push: >.made

.make: .grep({.so}).join(

kind($/) {
{

group($/) {
.make: ~$/<

colour($/) {
:%(
.make:

extra($/) {
.make:

period($/) {
.make:

height($/) {
.make:

visibility(
.make:

light(-->) ol
.parse($.light-defn,

light-svg {
.parse($.light-defn,

mnuun

) Al

.Aname

{ .position}
{@.colours.join(', ')}
.light}

colours(-—>

}[$il,]

light-defn(-->) A
= $.colours[0].substr(

{

colours { samewith(

{@.shapes.join(', ')}

)l

SA0) U

{
)b

.new) .made

.new) .made

{

.outline}

{$.pattern}

I unnmn

pattern {

return(

return(

.push:

.splice(

Str {
{$.duration} {$.pattern}

TOP($/) A

= .made
.made {
.made {
.made {
.made A
.make:
kind($/) {
(-
{
{
{
{
{
{
{
.make: .new(
group($/) {
.make: ~$/< >.Int
colour($/) {
= %(—-3
.make: {~$/}
extra($/) {
.make:
period($/) {
.make: < >.Int

LI I

.duration
.fl-times
.on
.extra

nunnn

b e ke o

.continuvous

Tl
-

Raku wordy style

my $number = prompt('Enter number> ');

$number . comb
.unique
.sort
.JoinC', ")
.say;

https://andrewshitov.com/2019/09/09/vnique-digits-in-perl-6/

pbsteve.com

Raku regex style (i)

my regex float { <[+-]>2?2\d*'.'\d+[e<[+-]>2?\d+]? }

https:/docs.raku.org/language/regexes-best-practices

ief £ 5 Kﬁﬁ pbsteve.com

Raku regex style (ii)

my regex float {

<[+-]>7? # optional sign
\ d* # leading digits, optional
\d+
[# optional exponent
e =f+]>2 Nd+
1?

}

* g g ﬁﬁ ﬁ https:/docs.rakuv.org/language/regexes-best-practices pBsteve.com

Raku regex style (iii)

my token sign { <[+-]1> }
my token decimal { \d+ }
my token exponent { 'e' <sign>? <decimal> }
my regex float {
<sign>?
<decimal>?
<decimal>
<exponent>?

i

* ({ 5 lgﬁ ﬁ https:/docs.rakuv.org/language/regexes-best-practices pBsteve.com

Usetul Links

% https

://github.com/bduggan/p6-jupyter-kernel

% https

://docs.raku.org/lanquage/grammars

%# https

://en.wikipedia.org/wiki/Light characteristic

% https

://github.com/p6steve/raku-Physics-Navigation

% https

://github.com/p6steve/raku—Physics—MeaEure

2

pbsteve.com

