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Component-based System Design

● Code, data, user-level
● Export APIs (E1 = {fn, ...})
● Explicit dependencies
● Unit of reuse & isolation

● Minimize functionality for the necessary APIs
● Strong, fine-grained isolation

Functionality

E1 E2

D2 D3D1
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Guidance for μ-Kernel Design

”...a concept is tolerated inside the μ-kernel only if 
moving it outside the kernel, i.e. permitting competing 
implementations, would prevent the 
implementation of the system’s required 
functionality.”

- Liedtke '95



Guidance for μ-Kernel Design

”...a concept is tolerated inside the μ-kernel only if 
moving it outside the kernel, i.e. permitting competing 
implementations, would prevent the 
implementation of the system’s required 
functionality.”

- Liedtke '95

Composite: push this to the extreme w/ component-defined
● scheduling
● parallel scalability
● concurrency
● capability delegation/revocation
● ...
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Asynchronous IPC

prio
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End-to-end timing requires dependency analysis



Synchronous IPC between Threads

prio
x prio

y
prio

z

End-to-end timing based on kernel mechanims
● In-kernel priority inheritance machinery, ceiling w/ limited prio
● Budget management and experation

rendezvous 



Spectrum of IPC Mechanisms

Synchronous Rendezvous 
Between Threads

Thread
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Ford et al. Evolving Mach 3.0 to a Migrating Thread Model, USENIX Winter ‘94
Gabber et al. The Pebble Component-Based Operating System, USENIX ATC ‘99
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Wang et al. Execution Stack Management for Hard Real-Time Computation in a 
Component-Based OS, RTSS ‘11



Thread Migration

p
c

scheduler



Thread Migration

scheduler

p
c



Thread Migration

scheduler

b, pb, p



Thread Migration

scheduler

b, pb, p

Tick!

Parmer et al. Predictable Interrupt Management and Scheduling in the 
                          Composite Component-based System, RTSS ‘08
Gadepalli et al.  Temporal Capabilities: Access Control for Time, RTSS ‘17
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Thread Migration

schedulers
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Gadepalli et al.  Temporal Capabilities: Access Control for Time, RTSS ‘17
Parmer et al. HiRes: a System for Predictable Hierarchical Resource 
                          Management, RTAS ‘11
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Composite Kernel Objects
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Thread Migration
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Gadepalli et al.  Slite: OS Support for Near Zero-Cost, Configurable 
                               Scheduling, RTAS ‘20
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Thread Migration
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Gadepalli et al.  Slite: OS Support for Near Zero-Cost, Configurable 
                               Scheduling, RTAS ‘20

Dispatch latency:
41 cycles

ULS too slow?
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Thread Migration

scheduler

b, pb, p

Gadepalli et al.  Chaos: a System for Criticality-Aware, Multi-core 
                               Coordination, RTAS ‘19
Samuel Jero et al. Practical Principle of Least Privilege for Secure Embedded 
                               Systems, RTAS ‘21

Round-trip IPC seL4 composite

X86-32 (3.2GHz) 934 741

Cortex a9 
(667 GHz, zynq)

630 543

IPC too slow?
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Kernel Synchronization

Can kernel APIs
– Limit the scalability of components?
– Cause interferences between components?

Component policies for predictability/scalability?

– Kernel must be wait-free w/             
                                       component-controlled cacheline contention                         

– Component-controlled IPI facilities

Gadepalli et al.  Chaos: a System for Criticality-Aware, Multi-core 
                               Coordination, RTAS ‘19
Wang et al. Speck: A Kernel for Scalable Predictability, RTAS ‘15
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Composite 
Infrastructure

● PoLP-focused RTOS
● NetBSD Rumpkernels
● Xen-like driver domains
● NASA CFS
● Mixed-criticality system 

orchestration
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ucVM Challenges

● MPU-based isolation vs. page-table software abstractions
– path-compressed radix tries flattened into MPU regions

● Limited # of MPU protected regions
– Solve memory layout: contiguous memory fits into # regions
– Treated as dynamic software protection cache

● Efficient coordination and event processing
– Kernel-bypass + micro-optimization

● ~8 VMs in 128KiB SRAM

Composite uk
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ucVM vs. FreeRTOS

Context Switch 2x Message Q 2-way IPC Mutex (cont) Interrupt
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ucVM

FreeRTOS

Arm Cortex-M7, 216 Mhz

Also: Secure Bare-metal interrupts
● Use Trustzone-M as secure kernel bypass for interrupts

Composite uk
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Pan et al.  Predictable Virtualization on Memory Protection Unit-  
                    based Microcontrollers, RTAS ‘18
Pan et al. MxU: Towards Predictable, Flexible, and Efficient             
                  Memory Access Control for the Secure IoT, EMSOFT ‘19
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EdgeOS: Isolation, Predictability, Performance, and Scale
• High speed data movement (10Gbps+) without sacrificing isolation
• Startup > 100X faster than fork+exec
• Scales to 1000s of services per host = 1 service per user!



EdgeOS: Strong Isolation & Performance



Per-client Service Instantiation
● Docker: the execution time of “docker start”
● Firecracker: the start time of the recommended “hello” image
● Linux: fork() + exec()

Composite uk

EdgeOS

Ren et al.  Fine-Grained Isolation for Scalable, Dynamic, Multi-       
                    tenant Edge Clouds, USENIX ATC ‘20
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Per-client Service Instantiation
● Docker: the execution time of “docker start”
● Firecracker: the start time of the recommended “hello” image
● Linux: fork() + exec()

170x

Composite uk
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EdgeOS: scalability for TLS proxies

76
Composite uk

EdgeOS
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https://github.com/gwsystems/composite

https://composite.seas.gwu.edu

https://github.com/gwsystems/composite
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