
The Composite Component-Based
Operating System

Gabriel Parmer

Based on research with:
Runyu Pan, Yuxin Ren, Phani Kishore Gadepalli,

Wenyuan Shao, Qi Wang, Jiguo Song, and many others

The George Washington University
gparmer@gwu.edu

Requirements Convergence

Embedded Systems Multi-tenant Cloud

Predictability
Simplicity
SWaP-C

Performance
Isolation
Elasticity

Requirements Convergence

Embedded Systems Multi-tenant Cloud

Predictability
Simplicity
SWaP-C

Performance
Isolation
Elasticity

Predictability/Tail-latency
Performance

Isolation & Security

Requirements Convergence

Embedded Systems Multi-tenant Cloud

Predictability
Simplicity
SWaP-C

Performance
Isolation
Elasticity

Predictability/Tail-latency
Performance

Isolation & Security

Predictability Performance

Isolation

Requirements Convergence

P
re

di
ct

ab
ili

ty

P
erform

ance

Isolation

Edge
Computing

 Cyber-physical Systems

Embedded
Systems

 Data-
 centers

Component-based System Design

● Code, data, user-level
● Export APIs (E1 = {fn, ...})
● Explicit dependencies
● Unit of reuse & isolation

● Minimize functionality for the necessary APIs
● Strong, fine-grained isolation

Functionality

E1 E2

D2 D3D1

Component-based System Design

● System composed
from components

● Limit scope of
– compromises
– faults
– unpredictability

NetDrv

SchedMM

SHMem

NetStk

I2C

App3App1 App2

Channel

App3

Component-based System Design

NetDrv

SchedMM

SHMem

NetStk

I2C

App3App1 App2

Channel

App3● System composed
from components

● Limit scope of
– compromises
– faults
– unpredictability

Guidance for μ-Kernel Design

”...a concept is tolerated inside the μ-kernel only if
moving it outside the kernel, i.e. permitting competing
implementations, would prevent the
implementation of the system’s required
functionality.”

- Liedtke '95

Guidance for μ-Kernel Design

”...a concept is tolerated inside the μ-kernel only if
moving it outside the kernel, i.e. permitting competing
implementations, would prevent the
implementation of the system’s required
functionality.”

- Liedtke '95

Composite: push this to the extreme w/ component-defined
● scheduling
● parallel scalability
● concurrency
● capability delegation/revocation
● ...

Composite Kernel Objects

Capability-table nodes

Page-table nodes

Composite Kernel Objects

Capability-table nodes

Page-table nodes

Components

Composite Kernel Objects

Capability-table nodes

Page-table nodes

Components

Threads
regs

Composite Kernel Objects

Capability-table nodes

Page-table nodes

Components

Threads

Untyped Memory
regs

...

Composite Kernel Objects

Capability-table nodes

Page-table nodes

Components

Threads

Untyped Memory
regs

...

Composite Kernel Objects

Capability-table nodes

Page-table nodes

Components

Threads

Untyped Memory
Virtual Memory

regs

...

Composite Kernel Objects

Capability-table nodes

Page-table nodes

Components

Threads

Untyped Memory
Virtual Memory

IPC: sync & async

regs

...

Asynchronous IPC

prio
x prio

y
prio

z

End-to-end timing requires dependency analysis

Synchronous IPC between Threads

prio
x prio

y
prio

z

End-to-end timing based on kernel mechanims
● In-kernel priority inheritance machinery, ceiling w/ limited prio
● Budget management and experation

rendezvous

Spectrum of IPC Mechanisms

Synchronous Rendezvous
Between Threads

Thread
Migration

Lie
dtk

e’s
L4

se
L4 +

 M
CS

Nova

Fiasc
o L4

Com
posit

e

Ford et al. Evolving Mach 3.0 to a Migrating Thread Model, USENIX Winter ‘94
Gabber et al. The Pebble Component-Based Operating System, USENIX ATC ‘99

Thread Migration

p
c

Thread Migration

p
c

Thread Migration

p
c

Thread Migration

p
c

Wang et al. Execution Stack Management for Hard Real-Time Computation in a
Component-Based OS, RTSS ‘11

Thread Migration

p
c

scheduler

Thread Migration

scheduler

p
c

Thread Migration

scheduler

b, pb, p

Thread Migration

scheduler

b, pb, p

Tick!

Parmer et al. Predictable Interrupt Management and Scheduling in the
 Composite Component-based System, RTSS ‘08
Gadepalli et al. Temporal Capabilities: Access Control for Time, RTSS ‘17

Thread Migration

scheduler

NIC!
Parmer et al. Predictable Interrupt Management and Scheduling in the Composite
Component-based System, RTSS ‘08
Gadepalli et al. Temporal Capabilities: Access Control for Time, RTSS ‘17

Parmer et al. Predictable Interrupt Management and Scheduling in the
 Composite Component-based System, RTSS ‘08
Gadepalli et al. Temporal Capabilities: Access Control for Time, RTSS ‘17

b, pb, p

Thread Migration

scheduler

NIC!
Parmer et al. Predictable Interrupt Management and Scheduling in the Composite
Component-based System, RTSS ‘08
Gadepalli et al. Temporal Capabilities: Access Control for Time, RTSS ‘17

Parmer et al. Predictable Interrupt Management and Scheduling in the
 Composite Component-based System, RTSS ‘08
Gadepalli et al. Temporal Capabilities: Access Control for Time, RTSS ‘17

temporal
capabilities

b, pb, p

b, p

Thread Migration

schedulers

b, pb, p

Gadepalli et al. Temporal Capabilities: Access Control for Time, RTSS ‘17
Parmer et al. HiRes: a System for Predictable Hierarchical Resource
 Management, RTAS ‘11

temporal
capabilities

b, p
b, p

b, p

Composite Kernel Objects

Threads

IPC: sync & async

regs

schedulers

b, pb, p

temporal
capabilities

Thread Migration

schedulers

b, pb, p

Gadepalli et al. Slite: OS Support for Near Zero-Cost, Configurable
 Scheduling, RTAS ‘20

ULS too slow?

Thread Migration

schedulers

b, pb, p

Gadepalli et al. Slite: OS Support for Near Zero-Cost, Configurable
 Scheduling, RTAS ‘20

Dispatch latency:
41 cycles

ULS too slow?

Thread Migration

scheduler

b, pb, p

IPC too slow?

Thread Migration

scheduler

b, pb, p

Gadepalli et al. Chaos: a System for Criticality-Aware, Multi-core
 Coordination, RTAS ‘19
Samuel Jero et al. Practical Principle of Least Privilege for Secure Embedded
 Systems, RTAS ‘21

Round-trip IPC seL4 composite

X86-32 (3.2GHz) 934 741

Cortex a9
(667 GHz, zynq)

630 543

IPC too slow?

Kernel Synchronization

Can kernel APIs/implementation
– Limit the scalability of components?
– Cause interference between components?

Kernel Synchronization

Can kernel APIs/implementation
– Limit the scalability of components?
– Cause interference between components?

Kernel Synchronization

Can kernel APIs/implementation
– Limit the scalability of components?
– Cause interference between components?

Kernel Synchronization

Can kernel APIs
– Limit the scalability of components?
– Cause interferences between components?

Component policies for predictability/scalability?

– Kernel must be wait-free w/
 component-controlled cacheline contention

– Component-controlled IPI facilities

Gadepalli et al. Chaos: a System for Criticality-Aware, Multi-core
 Coordination, RTAS ‘19
Wang et al. Speck: A Kernel for Scalable Predictability, RTAS ‘15

Research Approaches

A
1

OS

A
2

RTOS

A
2

A
1

Research Approaches

A
1

+
uni-

kernel

Composite uk

A
2

S
2

S
1

S
3

S
5

S
4

S
6

S
8

S
7

S
9

A’
2

RTOS

A
2

A
1

Composite
Infrastructure

● PoLP-focused RTOS
● NetBSD Rumpkernels
● Xen-like driver domains
● NASA CFS
● Mixed-criticality system

orchestration

Research Approaches

A
1

OS

A
2

RTOS

A
2

A
1

128KB SRAM
MPU

ucVM Challenges

● MPU-based isolation vs. page-table software abstractions
– path-compressed radix tries flattened into MPU regions

● Limited # of MPU protected regions
– Solve memory layout: contiguous memory fits into # regions
– Treated as dynamic software protection cache

● Efficient coordination and event processing
– Kernel-bypass + micro-optimization

● ~8 VMs in 128KiB SRAM

Composite uk

VMM RTOS

FreeRTOS

A
1

A
2 A

3

ucVM vs. FreeRTOS

Context Switch 2x Message Q 2-way IPC Mutex (cont) Interrupt
0

200

400

600

800

1000

1200

1400

ucVM

FreeRTOS

Arm Cortex-M7, 216 Mhz

Also: Secure Bare-metal interrupts
● Use Trustzone-M as secure kernel bypass for interrupts

Composite uk

VMM RTOS

FreeRTOS

A
1

A
2 A

3

Pan et al. Predictable Virtualization on Memory Protection Unit-
 based Microcontrollers, RTAS ‘18
Pan et al. MxU: Towards Predictable, Flexible, and Efficient
 Memory Access Control for the Secure IoT, EMSOFT ‘19

Research Approaches

A
1

OS

A
2

RTOS

A
2

A
1

Density
Multi-tenancy

Latency

The Edge: Options

Isolation Scalability
Startup
Time

High-
performance
networking

Processes

Containers

VMs

Feather-weight
Processes

Wasm Functions

The Edge: Options

Isolation Scalability
Startup
Time

High-
performance
networking

Processes

Containers

VMs

EdgeOS:
Feather-weight

Processes

The Edge: Options

Isolation Scalability
Startup
Time

High-
performance
networking

Processes

Containers

VMs

EdgeOS:
Feather-weight

Processes

EdgeOS: Isolation, Predictability, Performance, and Scale
• High speed data movement (10Gbps+) without sacrificing isolation
• Startup > 100X faster than fork+exec
• Scales to 1000s of services per host = 1 service per user!

EdgeOS: Strong Isolation & Performance

Per-client Service Instantiation
● Docker: the execution time of “docker start”
● Firecracker: the start time of the recommended “hello” image
● Linux: fork() + exec()

Composite uk

EdgeOS

Ren et al. Fine-Grained Isolation for Scalable, Dynamic, Multi-
 tenant Edge Clouds, USENIX ATC ‘20

Per-client Service Instantiation
● Docker: the execution time of “docker start”
● Firecracker: the start time of the recommended “hello” image
● Linux: fork() + exec()

20x

Composite uk

EdgeOS

Per-client Service Instantiation
● Docker: the execution time of “docker start”
● Firecracker: the start time of the recommended “hello” image
● Linux: fork() + exec()

170x

Composite uk

EdgeOS

EdgeOS: scalability for TLS proxies

76
Composite uk

EdgeOS

Conclusions

P
re

di
ct

ab
ili

ty

P
erform

ance

Isolation

Edge
Computing

 Cyber-physical Systems

Embedded
Systems

A
1

OS

A
2

RTOS

A
2

A
1

 Data-
 centers

? || /* */
https://github.com/gwsystems/composite

https://composite.seas.gwu.edu

https://github.com/gwsystems/composite

	Slide 1
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 53
	Slide 56
	Slide 57
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Evaluation: scalability
	Slide 77
	Slide 79

