
FAST ROBUST ARITHMETICS FOR GEOMETRIC
ALGORITHMS

T. Bartels

Technical University of Berlin, Germany

FOSDEM, 2022

Geometric Predicates.

Geometric predicates are functions that accept geometries and return
discrete results.
Here: Functions that take a fixed number of points and answer an
elementary geometric question.
Geometric predicates are used as subroutines of various geometric
constructions and spatial predicates.

Examples of Geometric Predicates (1).

2D orientation: For p,q, r ∈ R2, the position of r w.r.t. the oriented
line →pq is ∣∣∣∣ px − rx py − ry

qx − rx qy − ry

∣∣∣∣

> 0 left.
= 0 on.
< 0 right.

(determinant of a 2×2-matrix, degree 2 polynomial)

p

q

r

p

q

r

p

q

r

Examples of Geometric Predicates (2).

2D incircle: For p,q, r ,s ∈ R2, the position of s w.r.t. the
ccw-oriented circle through p,q, r is∣∣∣∣∣∣

px − sx py − sy (px − sx)
2 +(py − sy)

2

qx − sx qy − sy (qx − sx)
2 +(qy − sy)

2

rx − sx ry − sy (rx − sx)
2 +(ry − sy)

2

∣∣∣∣∣∣

> 0 inside.
= 0 on the boundary.
< 0 outside.

(determinant of a 3×3-matrix, degree 4 polynomial)
3D orientation and insphere: determinants of 3×3-matrix, degree 3
polynomial and 4×4-matrix, degree 5 polynomial respectively.

Applications of Geometric Predicates in Algorithms.

2D orientation: spatial predicates, such as point-within-polygon,
construction of convex hulls or triangulations.

2D incircle: verifying the Delaunay property in Triangulated irregular
networks (TIN).

Limitations of Computer Arithmetic.

Floating-point numbers can not represent all real values, e.g. the
value of double a = 0.1 is closer to 0.100000000000000006.
Floating-point operations generally incurs round-off errors, i.e.

x + y − ε (x ⊕y)≤ x ⊕y ≤ x + y + ε (x ⊕y)

with machine-epsilon ε and floating-point addition ⊕.
Floating-point and integer operations can overflow.
Signs of determinants or polynomials can be computed incorrectly.

Limitations of Computer Arithmetic: Example.

Example: Consider p := (−0.01,−0.59), q := (0.01,0.57),
r := (0.15,8.69) and s := (0.07,4.05).
They all lie on the line f (x) = 58x −0.01 but their nearest
approximations in double precision are not collinear.
A naive implementation of the 2D orientation predicate in double
precision yields:

pO2D (p,q,s) = 0

pO2D (p, r ,s) = 0

pO2D (p,q, r) ̸= 0.

These results are incorrect and self-contradictory.

Limitations of Computer Arithmetic: Visualisation.

Visualisation for 2D orientation results with a naive double precision
implementation for p := (19,19), q := (16,16) and r in a very small
neighbourhood of (3.8,3.8).

Robustness Issues.

Typically, geometric algorithms are formulated and analyzed for real
numbers with exact computations (real RAM).
Incorrect predicate results can cause inconsistencies in the execution
of algorithms, which can lead to incorrect results, invalid
constructions, crashes or infinite loops.
Examples:

▶ Triangulations can be incorrectly connected.
▶ Sequences of Delaunay edge flips may never terminate.
▶ A point could be found outside of two closed polygons but within their

union.
This may be unacceptable even if correctness for edge cases is not
critical.

Possible Solutions.

Predicates could be evaluated with exact numbers types.
▶ Operations on exact number types can be orders of magnitude slower

than operations on built-in types.
▶ This performance penalty may be prohibitive when predicates are called

millions of times.
Redundant predicate calls could be avoided to rule out
inconsistencies.

▶ Deciding whether a predicate call is redundant may be computationally
hard.

Inputs could be perturbed to eliminate degeneracies near-collinear
points.
The solution in this implementation uses floating-point filters:

▶ Non-degenerate inputs are processed quickly and correctly.
▶ Degenerate inputs are processed using exact arithmetic.

Floating-Point Filters.

A floating-point filter is a function that returns either the correct
predicate result if it can decide the problem returns that it is
uncertain.
In practice, very few predicate calls are so degenerate that they can
not be decided by a filter.
One or more filters can be used in sequence. If all filters fail, an exact
stage is required.
If the filters are fast and most predicate calls are easily decidable, we
obtain robust predicates without a severe performance penalty on
average.
Existing implementations include [Shewchuk, 1997] (filters and exact
stages for 2D / 3D orientation, incircle and insphere predicates by J.
R. Shewchuk) and FPG (a code generator for floating-point filters
presented in [Meyer and Pion, 2008]).

Floating-Point Filters: Example.

Filter for 2D orientation: If, using native floating-point operations,
the absolute value of

(px − rx)(qy − ry)− (py − ry)(qx − rx)

is greater than or equal to(
3ε +16ε

2)(|px − rx | |qy − ry |+ |py − ry | |qx − rx |) ,

then its sign is guaranteed to be correct. otherwise, we can go to
higher precision.
Otherwise, the filter fails and we can try again with a more precise
filter or exact computation.
Based on forward error analysis (proof in [Shewchuk, 1997]) that can
be tedious to implement by hand.

Our implementation: Overview.

Implemented as a project for Google Summer of Code 2020 (published
at github.com/BoostGSoC20/geometry) with Boost.Geometry.
Project was mentored by Vissarion Fisikopoulos.
Generates filters and exact stages at compile-time.
Header-only implementation, no special build-dependencies or steps
required.
Generates multi-stage predicates that can be extended with custom
filters.

https://github.com/BoostGSoC20/geometry

Our Implementation: Expressions.

Arbitrary polynomial expressions can be specified in C++-syntax at
compile-time.
Polynomials are represented in the type system using expression
templates.
Notation for variables in expression is inspired by std::placeholders.

// example
constexpr auto orientation2d =

(_3 - _1) * (_6 - _2)
- (_5 - _1) * (_4 - _2);

Our Implementation: Floating-point filters.

Filters are based on compile-time forward error analysis, similar to
stage A in [Shewchuk, 1997].
The expressions and constants for error bounds are computed at
compile-time using template metaprogramming.
Any floating-point type with correct rounding, such as float or double,
is supported.

using filter = forward_error_semi_static
<orientation2d , double >;

Our Implementation: Exact stage and extensibility.

Exact stages are evaluated using floating-point expansion arithmetic,
as described as stage D in [Shewchuk, 1997].
The basic idea of floating-point expansions is storing numbers in
multiple components to extend precision.
E.g. double-double arithmetic can be viewed as a form of
expansion-arithmetic with two components.
The required memory is known at compile-time (no heap allocation
necessary).
Exact stages and custom filters can be added to our implementation
using exact and interval-number types such as those found in CGAL.

Full Example.

constexpr auto orientation2d =
(_3 - _1) * (_6 - _2)

- (_5 - _1) * (_4 - _2);

using filter = forward_error_semi_static
<orientation2d , double >;

using exact_stage =
stage_d <orientation2d , double >;

staged_predicate <filter , exact_stage > p;

p.apply(px, py, qx, qy, rx, ry);

Performance in spatial predicates.
Comparison of timings in ms to determine whether 20,000 generated
points are within a polygon of 22,907 points representing Russia.

Random Points Interpolated Boundary
0

100

200

300

400

500

600

373
364

497

399

Non-robust predicates

our implementation

The non-robust version produces multiple incorrect results.

Performance in Delaunay Triangulation.
Data sets: uniformly random points, grid points and GIS data,
described in [Špelič et al., 2008].

Uniform Grid GIS 193360 F.pnt
0

20

40

60

80

100

120

140

160

180

58
63

121

67

89

137

75

164

154

82

156

164Non-robust predicates

our implementation

Shewchuk’s implementation

CGAL’s implementation

The speed (in ms) of our predicates was compared to the speed of
naive predicates and robust predicates of Shewchuk and CGAL.

Conclusion.

Fast, robust predicates can make algorithms and spatial predicates
robust at acceptable runtime cost.

Our new implementation of robust predicates can be used for
arbitrary, polynomial predicate expressions.

No code-generation tools/steps required.

The performance of our implementation of robust predicates is
competitive when compared to established solutions.

References.

Meyer, A. and Pion, S. (2008).
FPG: A code generator for fast and certified geometric predicates.
In Real Numbers and Computers, pages 47–60, Santiago de
Compostela, Spain.
https://hal.inria.fr/inria-00344297.

Shewchuk, J. R. (1997).
Adaptive precision floating-point arithmetic and fast robust geometric
predicates.
Discrete & Computational Geometry, 18(3):305–363.

Špelič, D., Novak, F., and Žalik, B. (2008).
Delaunay triangulation benchmarks.
Journal of Electrical Engineering, 59(1):49–52.

https://hal.inria.fr/inria-00344297

