
FOSDEM / D.Testing 2022

Frisbee
Automated Testing Over Kubernetes

Fotis Nikolaidis
Systems Research Engineer
ICS-FORTH, Greece

FOSDEM / D.Testing 2022

FORTH

 Creta

A story about a lab …

2

FOSDEM / D.Testing 2022

A story about a lab …

● The fun …

● The misery …

● Writing proper tests require the same level of engineering effort as the
system they test! Much less attractive to write ….

● As opposed to features, the value of tests is seldom visible in the short term

● Test automation becomes essential as the projects grow.

3

FOSDEM / D.Testing 2022

Systems Testing Challenges
Frisbee

4

● Multiple interacting components

● Multiple programming environments

● Multiple libraries

● Multiple applications

● Multiple architectures

● Multiple clusters

● Functionality and performance are both important

FOSDEM / D.Testing 2022

Key Requirements
Frisbee

5

● Allow researchers to focus on their systems, minimizing distractions from testing
issues.

● Offers a fully automated and disposable testing environments with the tools that
researchers may need.

● Help researchers under the performance and behavior of their systems, under
various operating conditions.

● Automatically validates the system for transition into erroneous states or SLA
violations.

● Integration with CI/CD pipelines to test early, and test often !

FOSDEM / D.Testing 2022

The testing landscape
Frisbee

6

😖 Binary Processes on Physical Infrastructure

😖 Binary Processes on VMs

😖 Containers on Docker

😖 Containers on Docker-Compose

😖 Containers on Kubernetes

😖 Containers on Kubernetes with CI/CD pipelines

😎 Frisbee: A Kubernetes-native testing platform

FOSDEM / D.Testing 2022

The testing landscape
Frisbee

7

● Binary Processes on Physical Infrastructure

𝘅 Manual scripts to deploy software and synchronize test-steps.

𝘅 Portability of the test

𝘅 High maintenance cost

✓ Low execution overheads

FOSDEM / D.Testing 2022

The testing landscape
Frisbee

8

● Binary Processes on VMs

𝘅 Manual scripts to deploy software and synchronize test-steps.

✓ Portability of the test

𝘅 High maintenance cost

𝘅 High execution overheads

FOSDEM / D.Testing 2022

The testing landscape
Frisbee

9

● Containers on Docker

𝘅 Manual scripts to deploy software and synchronize test-steps.

✓ Portability of the test

✓ Low maintenance cost

✓ Low execution overhead

FOSDEM / D.Testing 2022

The testing landscape
Frisbee

10

● Containers on Docker-Compose

✓ Rich and expressive DSL for writing multi-stage scenarios

✓ Portability of the test

✓ Low maintenance cost

✓ Low execution overhead

𝘅 Bound to a single node

FOSDEM / D.Testing 2022

The testing landscape
Frisbee

11

● Containers on Kubernetes

𝘅 DSL for deployment and configuration, not for multi-stage experiments

✓ Portability of the test

✓ Low maintenance cost

✓ Low execution overhead

✓ Multi-node testing environment

FOSDEM / D.Testing 2022

The testing landscape
Frisbee

12

● Containers on Kubernetes with CI/CD pipelines

✓ Rich and expressive DSL for writing multi-stage scenarios

✓ Portability of the test

✓ Low maintenance cost

✓ Low execution overhead

✓ Multi-node testing environment

𝘅 Still requires human effort to analyze the results

FOSDEM / D.Testing 2022

The Frisbee Testbed
Frisbee

13

Frisbee is a Kubernetes extension that provides:

✓ Rich and expressive DSL for writing
complex testing scenarios

✓ Portability of the test

✓ Low maintenance cost

✓ Low execution overhead

✓ Multi-node testing environment

✓ Programmatically assertable conditions

CRs (Yaml Files)

CR Definitions
Kubernetes
ControllersFr

is
be

e
O

pe
ra

to
r

Cluster
node

Pod

Fr
is

be
e

Ag
en

ts

App
Container

Cluster
node

Pod

Fr
is

be
e

Ag
en

ts

App
Container

Overlay Networks

Kubernetes API

Deployment Evaluation Analysis

Telemetry
Stack

Templates Workflow

Commands

Annotations &
 Alert

FOSDEM / D.Testing 2022

A “Hello, Network!” Frisbee test
Frisbee

14

spec:
 actions:
 # Create an iperf server
 - action: Service
 name: server
 service:
 templateRef: iperf.server

 # Create a cluster of iperf clients
 - action: Cluster
 name: clients
 depends: { running: [server] }
 assert:
 state: '{{.state.NumOfFailures()}} >= 1'
 metrics: 'avg() of query(metric, 5m, now) is below(1000)'
 cluster:
 templateRef: iperf.client

 instances: 30
 inputs:
 - { server: .service.server.one, seconds: "600" }

 - { server: .service.server.one, seconds: "30" }
 schedule:

 cron: "@every 1m"

1

2

3

4

5

6

7

9

8

1 Instantiate a Service

2 Based on the given template

3 Then instantiate a cluster of services

4 When certain conditions are met.

5 Abort on failures or SLA violations

6 Within the cluster, create 30 services.

7 Iterating over the given inputs.

8 Inputs may use addressing macros

9 Schedule 1 service every 1 minute.

Scenario

FOSDEM / D.Testing 2022

A “Hello, Network!” Frisbee test
Frisbee

15

spec:
 actions:
 # Create an iperf server
 - action: Service
 name: server
 service:
 templateRef: iperf.server

 # Create a cluster of iperf clients
 - action: Cluster
 name: clients
 depends: { running: [server] }
 assert:
 state: '{{.state.NumOfFailures()}} >= 1'
 metrics: 'avg() of query(metric, 5m, now) is below(1000)'
 cluster:
 templateRef: iperf.client

 instances: 30
 inputs:
 - { server: .service.server.one, seconds: "600" }

 - { server: .service.server.one, seconds: "30" }
 schedule:

 cron: "@every 1m"

1

2

3

4

5

6

7

9

8

1 Instantiate a Service

2 Based on the given template

3 Then instantiate a cluster of services

4 When certain conditions are met.

5 Abort on failures or SLA violations

6 Within the cluster, create 30 services.

7 Iterating over the given inputs.

8 Inputs may use addressing macros

9 Schedule 1 service every 1 minute.

Scenario

Join
Server Join

Client-0
Join
Client-1 Exit ExitJoin Join Exit

FOSDEM / D.Testing 2022

A “Bye Bye, Network!” Frisbee test
Frisbee

16

spec:
 actions:
 # Create an iperf server
 - action: Service
 name: server
 service:
 templateRef : iperf.server

 # Create a cluster of iperf clients
 - action: Cluster
 name: clients
 depends: { running: [server] }
 assert:
 state: '{{.state.NumOfFailures()}} >= 1'
 metrics: 'avg() of query(metric, 5m, now) is below(1000)'
 cluster:
 templateRef : iperf.client
 instances: 30
 inputs:
 - { server: .service.server.one, seconds: "600" }
 - { server: .service.server.one, seconds: "30" }
 schedule:
 cron: "@every 1m"

 # After a while, inject a network partition
 - action: Chaos
 name: partition
 depends : { running: [server] }
 chaos:
 templateRef: chaos.network.partition
 inputs:
 - { server: .service.server.one, duration: "2m" }

Short-term
Network
Failure

Unexpectedly
 slow recovery

Join Exit

1 1 Abstract failures as Chaos Jobs

2 2 Enable execution-driven fault injection

FOSDEM / D.Testing 2022

Performance
Frisbee

17

FOSDEM / D.Testing 2022

Scalability
Frisbee

18

FOSDEM / D.Testing 2022

Elasticity
Frisbee

19

FOSDEM / D.Testing 2022

Availability
Frisbee

20

FOSDEM / D.Testing 2022

Assert: Metrics-Driven
Frisbee

21

Metrics-Driven assertions check whether the system operates within expected limits.

Pod

Frisbee
Controller

Webhook

Real-Time
Dashboards

Alerts

React

Prometheus / Grafana

Pod
App

Container

Service

Telemetry
Agent
Chaos
Agent

Kubernetes API
metrics:
avg()
of query(metric, 5m, now)
is below(1000)

FOSDEM / D.Testing 2022

Assert: Object State
Frisbee

22

State-Driven assertions check whether the system transits into erroneous states.

Frisbee
Controller

Kubernetes API

Workflow

Unrelated
Service(s)

Chaos

Related
Service(s)

Pod
App

Container

Service

Telemetry
Agent
Chaos
Agent

Inject Fault

Cluster

Assertions Dependencies Status Update

Managed States
● Pending
● Running
● Success
● Failed
● Suspended

FOSDEM / D.Testing 2022

Test factories - Reusability
Frisbee

23

spec:
 actions:
 # Create an iperf server
 - action: Service
 name: server
 service:
 templateRef : iperf.server

 # Create a cluster of iperf clients
 - action: Cluster
 name: clients
 depends: { running: [server] }
 assert:
 state: '{{.state.NumOfFailures()}} >= 1'
 metrics: 'avg() of query(metric, 5m, now) is
below(1000)'
 cluster:
 templateRef : iperf.client
 instances: 30
 inputs:
 - { server: .service.server.one, seconds: "600" }
 - { server: .service.server.one, seconds: "30" }
 schedule:
 cron: "@every 1m"

 # After a while, inject a network partition
 - action: Chaos
 name: partition
 depends : { running: [server] }
 chaos:
 templateRef: chaos.network.partition
 inputs:
 - { server: .service.server.one, duration: "2m" }

spec:
 inputs:
 parameters:
 server: localhost
 seconds: “60”
 service:
 decorators:
 Telemetry:

- platform.telemetry.container
- iperfmon.client

 containers:
 - name: app
 image: someimage
 Command:...
 # … blah blah

 server={{“{{.Inputs.Parameters. server}}”}}
 seconds={{“{{.Inputs.Parameters. seconds}}”}}

 iperf3 -c ${server} -t ${seconds}

Scenario:
netfailure.yaml

Template:
iperf-client.yaml

exposed

hidden

FOSDEM / D.Testing 2022

A Frisbee Template
Frisbee

24

spec:
 inputs:
 parameters:
 server: localhost
 seconds: “60”
 service:
 decorators:
 telemetry: [platform.telemetry.container, iperfmon.client]
 requirements:
 persistentVolumeClaim:
 name: datastore
 spec: …
 containers:
 - name: app
 image: someimage
 volumeMounts:

- name: datastore
 mountPath: /store
 Command:...
 # … blah blah

 server={{“{{.Inputs.Parameters.server}}”}}

seconds={{“{{.Inputs.Parameters.seconds}}”}}

 iperf3 -c ${server} -t ${seconds}

1

2

3

4

5

1 Declarate parameters

2 Re-use other templates

3 Deployment requirements

4 Automation are for free

5 Use inputs to manipulate the container

Functionality

FOSDEM / D.Testing 2022

Project Structure
Frisbee

25

Library of testing
components

Components packaged
via HELM

Visualizations & Alerts

Usage

Test Factory

FOSDEM / D.Testing 2022

How to use Frisbee
Frisbee

26

● Quick Tutorial

● Charts are self-descriptive

● With dependencies

● And usage examples

FOSDEM / D.Testing 2022

Summary
Frisbee

27

● Frisbee: A platform for Kubernetes-native Testing

✓ Multi-node testing environment

✓ Similar environment for dev, test, and production

✓ Controllers run within Kubernetes cluster. Batteries-includes

✓ Experiments written in YAML -> Write once / Run anywhere.

✓ System Spinup -> Testing Actions -> System Validation

FOSDEM / D.Testing 2022

Looking for Collaborators Frisbee

Devops
● Testing workflows
● Systems for testing

Researchers
● Many ideas floating around

Developers
● Kubernetes Controllers
● Testing Resources

https://github.com/CARV-ICS-FORTH/frisbee

fnikol@ics.forth.gr

28

https://github.com/CARV-ICS-FORTH/frisbee

FOSDEM / D.Testing 2022

Fotis Nikolaidis

THANKS
Do you have any questions?

fnikol@ics.forth.gr

FORTH, Crete, Greece

Acknowledgement:
This work is supported by the
European Commission within the scope of:

ETHER (H2020-MSCA-IF-2019)
Grant Agreement ID: 894204

29

mailto:fnikol@ics.forth.gr

