Let's Talk About
Foreign Functions In
Java

Deepu K Sasidharan
@deepulO5 | deepu.tech

okta



https://deepu.tech/

o Deepu K Sasidharan

JHipster co-lead developer
Creator of KDash, JDL Studio Full Stack

Developer Advocate @ Okta Development
o with JHipster
OSS aficionado, author, speaker, polyglot dev

)7V deepul05

¥ @oktaDev ¥ @deepu105



¥ @oktaDev @deepu105



o Foreign Function Interface (FFl)

Call routines from another program regardless of the language
Most modern languages provide this feature in intuitive ways
Term originated from common LISP

Most languages use C/C++ calling conventions

W @oktaDev ¥ @deepu105



O whyFR

Interact with legacy apps

Access features not available in the language

Use native libraries

Access functions or programs on the host OS

GPU and CPU offloading (Cuda, OpenCL, OpenGL, Vulcan, DirectX...)
Multiprecision arithmetic, Matrix multiplications

Deep learning (Tensorflow, cuDNN, Blas...)

OpenSSL, V8, and many more

¥ @oktaDev ¥ @deepu105



A history of FFl in Java



o Java Native Interface (JNI)

¥ @oktaDev

Native interface access for C/C++/Assembly

Fastest solution in Java

Complicated to use and brittle

Not very secure and could cause memory safety issues
Overhead and performance loss is possible

Difficult to debug

Depends on Java devs to write safe C binding code manually

¥ @deepu105



o Java Native Access (JNA)

Native interface access for C/C++/Assembly

Much simpler to use

Dynamic binding. No need to write any C binding code
Widely used and mature library

Uses reflection

Built on top of JNI

Has performance overhead and can be slower than JNI
Difficult to debug

https://github.com/java-native-access/jna

¥ @oktaDev ¥ @deepu105


https://github.com/java-native-access/jna

o Java Native Runtime (JNR)

Native interface access for C/C++/Assembly

Easy to use

Dynamic binding. No need to write any C binding code
Modern API

Comparable performance to JNI

Built on top of JNI

Difficult to debug

https://github.com/ijnr/jnr-ffi

¥ @oktaDev ¥ @deepu105


https://github.com/jnr/jnr-ffi

Project Panama

https://foojay.io/today/project-panama-for-newbies-part-1/



o Foreign-Memory Access API

e Safely and efficiently access foreign memory outside of the Java heap
o Consistent API for different types of memory
o JVM memory safety should not be compromised
o Explicit memory deallocation
o Interact with different kinds of memory resources, including off-heap or native
memory.

JEP-370 - First incubator in JDK 14

JEP-383 - Second incubator in JDK 15

JEP-393 - Third incubator in JDK 16

Combined as Foreign Function & Memory API

¥ @oktaDev ¥ @deepu105



o Foreign Linker API

® API for statically-typed, pure-Java access to native code
o Focus on Ease of use, flexibility and performance
o Initial support for C interop

o Call native code in a .dll/.so/.dylib
o Create a native function pointer to a Java method which can be passed to code

in a native library
e JEP-389 - First incubator in JDK 16
e Combined as Foreign Function & Memory API

¥ @oktaDev ¥ @deepu105



O vector Api

® API for reliable and performant vector computations
o Platform agnostic
o Clear and concise API
o Reliable runtime compilation and performance
o Graceful degradations

® JEP-338 - Firstincubator in JDK 16
® JEP-414 - Second incubator in JDK 7
® JEP-417 - Third incubator in JDK 18

¥ @oktaDev ¥ @deepu105



o Foreign Function & Memory API

® Evolution of the Foreign-Memory Access APl and the Foreign Linker API
o Same goals and features as the original two (Ease of use, safety, performance,
generality)
® JEP-412 - First incubator in JDK 17

® JEP-419 - Second incubator in JDK 18

¥ @oktaDev ¥ @deepu105



o Jextract

A simple command line tool

Generates a Java APl from one or more native C headers
Shipped with OpenJDK Panama builds

Makes working with large C headers a cakewalk

Generate Java APl for OpenGL

jextract --source -t org.opengl \
-I /usr/include /usr/include/GL/glut.h

¥ @oktaDev ¥ @deepu105



JNI vs Panama



o getpid with JNI

W @oktaDev

getpid()

Generate header

Javac -h

Main.java

Main.h

Main.c

Implement C class

Compile C code to dynamic lib

System.loadLibrary ("main") ;

java Main.java

¥ @deepu105



o getpid with Panama (2 ways)

jextract —-source -t org.unix \
-I /usr/include /usr/include/unistd.h

W @oktaDev

java Main. java

java Main. java

¥ @deepu105



Benchmark



o Benchmark on OpenJDK 17

Full benchmark (average time, smaller is better)

Benchmark Mode Cnt Score Error Units
FFIBenchmark.JNI avgt 40 49.182 £ 1.079 ns/op
FFIBenchmark.panamaDowncall avgt 40 50.746 £ 0.702 ns/op

FFIBenchmark.panamadExtract avgt 40 48.838 + 1.461 ns/op

https://github.com/deepul05/Java-FFI-benchmarks

¥ @oktaDev ¥ @deepu105


https://github.com/deepu105/Java-FFI-benchmarks

¥ @oktaDev @deepu105



o Project panama current state

OpenJDK 17

e Can already work with languages that has C interop
o like C/C++, Fortran, Rust, etc

® Performance on par with JNI
o Hopefully this will be improved further

® Jextract makes is really easy to use native libs
® Memory safe and less brittle than JNI
e Native/off-heap memory access
e Documentation needs huge improvement
o its anincubator feature so this is expected
¥ @oktaDev

¥ @deepu105



o Learn more

® https://foojay.io/today/project-panama-for-newbies-part-1/

e https://medium.com/@youngty1997/messing-around-with-project-panama
-2019-ea-and-personal-thoughts-fd3445e9438b

e https://hg.openjdk.java.net/panama/dev/raw-file/4810a7de75cb/doc/pana
ma_foreign.html#using-panama-foreign-jdk (some examples are outdated

for current API)

¥ @oktaDev ¥ @deepu105


https://foojay.io/today/project-panama-for-newbies-part-1/
https://medium.com/@youngty1997/messing-around-with-project-panama-2019-ea-and-personal-thoughts-fd3445e9438b
https://medium.com/@youngty1997/messing-around-with-project-panama-2019-ea-and-personal-thoughts-fd3445e9438b
https://hg.openjdk.java.net/panama/dev/raw-file/4810a7de75cb/doc/panama_foreign.html#using-panama-foreign-jdk
https://hg.openjdk.java.net/panama/dev/raw-file/4810a7de75cb/doc/panama_foreign.html#using-panama-foreign-jdk

W @oktaDev

Thank You

Deepu K Sasidharan

@deepulO5 | deepu.tech

https://deepu.tech/tags#rust

okta

¥ @deepu105


https://deepu.tech/

