
Immutable Infrastructure
with Flatcar Container Linux
FOSDEM’²² Infra Management devroom | 2022-02-05

Hi, I'm Kai
Kai Lüke
Software Engineer, Microsoft
Working on
Flatcar Container Linux

Github: pothos
Email: kailuke@microsoft.com

Immutable Infrastructure

»Immutable Infrastructure«

❏ Paradigm to reprovision servers instead of managing
their configuration after provisioning

❏ Pros:
❏ Reproducible and consistent configuration, e.g., matching a git repository

❏ Cons:
❏ Reprovisioning takes longer

❏ Data gets lost (local application data, logs, SSH host keys, ...)

❏ New IP address depending on cloud environment

Flatcar Container Linux
(Fork/Continuation of CoreOS Container Linux)

Why Flatcar Container Linux?

Automated,
streamlined

updates
Easily apply all latest

security patches

Atomic updates and
rollbacks

Co-ordinated with
Kubernetes control plane

(update operator)

Minimal distribution
for containers

Reduced dependencies

Less base software
to manage

Reduced attack
surface area

Secure, immutable
file system

Read-only /usr partition

No package installation or
modification of base OS

files

Removes entire category
of security threats

(e.g., runc vulnerability
CVE-2019-5736)

Declarative
provisioning

First boot setup from
declarative configuration

Immutable infrastructure
(no custom per-node

changes during
production)

Repeatable deployment

Ignition Config

❏ JSON format
❏ Declaration of files, systemd units, networks, users,

filesystems, and partitions
❏ Referencing data from external resources
❏ Applied from initramfs (first-boot flag file for GRUB

sets kernel parameter)
❏ Contrast to cloud-init which runs after the

initramfs, and on every boot

Container Linux Config (CLC)

❏ Friendlier YAML format with extras (octal
permissions, variables for metadata)

❏ Transpiled to Ignition JSON through transpiler “ct”
cat cl.yaml | docker run --rm -i quay.io/coreos/ct:latest-dev >
ignition.json
./flatcar_production_qemu.sh -i ignition.json

❏ Spec: flatcar.org/docs/latest/provisioning/config-transpiler/configuration/

https://github.com/kinvolk/container-linux-config-transpiler
https://stable.release.flatcar-linux.net/amd64-usr/current/flatcar_production_qemu.sh
https://www.flatcar.org/docs/latest/provisioning/config-transpiler/configuration/

Container Linux Config Example

storage:
files:

- path: /etc/some.conf
filesystem: root
mode: 0644
contents:
inline: |

A=a
B=b

Or with remote instead of 'inline' content:
remote:

url: …

Terraform

Terraform and Ignition

❏ Ignition config is set through instance user-data
attribute (no need for the SSH provisioner)

❏ terraform-ct-provider to transpile CLC to Ignition,
often combined with the template-provider

❏ Or: terraform-ignition-provider (1.x) to assemble
Ignition JSON from HCL

https://registry.terraform.io/providers/poseidon/ct/latest
https://www.terraform.io/docs/providers/ignition/index.html

Terraform Example

resource "digitalocean_droplet" "machine" {
for_each = toset(var.machines)
image = digitalocean_custom_image.flatcar.id
user_data = data.ct_config.machine-ignition[each.key].rendered

}
data "ct_config" "machine-ignition" {
for_each = toset(var.machines)
content = data.template_file.machine-cl-config[each.key].rendered

}
data "template_file" "machine-cl-config" {
for_each = toset(var.machines)
template = file("${path.module}/cl/machine-${each.key}.yaml.tmpl")
vars = { something = var.something }

}

Configuration Changes
and

Instance Lifecycle

Instance Lifecycle with Replacement

❏ Instance replacement for user-data changes can be
disruptive: downtime, data transfer needed, slow,
maybe IP address changes, too, etc.

❏Workarounds: create_before_destroy, backups or only
using external storage, last resort: delaying
replacement with ignore_changes (→ config drift)

Instance Lifecycle without Replacement?

❏ Ansible: Flatcar bootstrap with pypy in home folder
❏ Not really immutable infra without reprovisioning as

old files may be lingering around → config drift
❏ Also, half Ignition, half Ansible gets messy
❏ Can't we just somehow rerun Ignition?

Instance reprovisioning with Ignition

❏ touch /boot/flatcar/first_boot is not enough:
❏ Must remove old versions of config files
❏ Must remove /etc/machine-id to trigger systemd

first-boot semantics for preset evaluation
❏ Big hammer: Reformat rootfs through Ignition (use

other disks for persistent data)

Reformat with Ignition

CLC snippet:
filesystems:

- name: root
mount:
device: /dev/disk/by-label/ROOT
format: ext4
wipe_filesystem: true
label: ROOT

Quite fast, preserves the IP address
but still loses most local data…

More problems: User-data Updates

❏ Terraform cloud providers and cloud APIs in general
make it hard to update user data in-place

❏ Workaround: Indirection through cloud bucket/blob
storage like S3/GCS, let instance user data point to
the storage object (stable reference), and update
the config in the storage object

Ignition Config Indirection

Storage Object

• Final Ignition Config

Ignition Config

• Replace Directive
(use config from

URL)

Config Updates

Stable URL

Ignition Config in Storage Object

Point to storage URL:
ignition: → config: → replace: → source: → URL

Terraform Example:
resource … {
user_data = "{ \"ignition\": { \"version\": \"2.3.0\",

\"config\": { \"replace\": { \"source\":
\"s3://${aws_s3_bucket_object.object.bucket}/${aws_s3_bucket_object.ob

ject.id}\" } } } }"
}
resource "aws_s3_bucket_object" "object" {
content = data.ct_config.machine-ignition.rendered

}

Trigger Reboot and Ignition Rerun

Terraform null resource:
resource "null_resource" "reboot-when-ignition-changes" {
triggers = { config = data.ct_config.machine-ignition.rendered }
depends_on = [aws_s3_bucket_object.object]
provisioner "local-exec" {

command = "[… SSH cmd to create first_boot file and reboot …]"
}

}

Not the nicest workaround, some git-ops like
daemon on the instance to check the storage object
can work, too

Idea: Teach Ignition to Preserve State

❏ Instead of discarding the whole rootfs, let's improve
Ignition to be able to selectively keep wanted files

❏ A Draft PR implements this, e.g.:
"cleanExcept":
["/etc/ssh/ssh_host_.*", "/var/log", …]

❏ Specify app data or container image folders
❏ The machine ID can be preserved

with systemd.machine_id=… in grub.cfg

https://github.com/flatcar-linux/ignition/pull/34

Proof-of-Concept Demo

❏ Using the qemu helper script instead of Terraform:
asciinema.org/a/462614

https://asciinema.org/a/462614

Results with the Proof-of-Concept

❏ Fast reprovisioning, preserves IP address and all
local data (SSH host keys, system logs, application
data, as needed)

❏ Declarative config management without drift
❏ Since only SSH is needed it's even viable for bare

metal lacking IPMI automation (place/update
config.ign file on OEM partition)

❏ Some workarounds were needed, though

Summary

❏ Immutable Infra possible even for stateful systems
❏ Flatcar Container Linux already simplifies OS

maintenance through immutable A/B updates
❏ Choose your strategy for user-data config changes
❏ Terraform examples on GitHub:

flatcar-linux/flatcar-terraform

https://github.com/flatcar-linux/flatcar-terraform

Kai Lüke
Github: pothos
Email: kailuke@microsoft.com

Flatcar Container Linux
Website: flatcar.org

GitHub Repos: flatcar-linux

Terraform Examples:
flatcar-linux/flatcar-terraform

Thank you!

https://www.flatcar.org/
https://github.com/flatcar-linux
https://github.com/flatcar-linux/flatcar-terraform

