
5Distributed Join Algorithms in CrateDB
How We Made Distributed Joins 23 Thousand Times Faster

Marija Selakovic
Developer Advocate 
marija@crate.io

mailto:marija@crate.io


CrateDB

2022-02-06 Crate.io2

Scale

SQL

OSS

Search Time SeriesNoSQL

• Since 2014: https://github.com/crate/crate

• The distributed database built for data-
intensive analytics solutions

• PostgreSQL interface
• Based on Apache Lucene
• Open Source under Apache License v2.0

https://github.com/crate/crate


Motivation

2022-02-06 Crate.io3

• CrateDB analyzes and indexes data at scale: TB or even PB of data
• Allows efficient query over large datasets
• SQL compatibility – developers rely on JOIN operators when querying multiple tables
• Distributed architecture poses challenges for efficient JOIN operators
• Default algorithm: nested loop join algorithm with some optimizations for distributed 

query execution
• This talk: focus on equi-join and the performance improvements with distributed block hash 

join algorithm



Joins in CrateDB

2022-02-06 Crate.io4

• CrateDB supports:
• Cross joins
• Inner joins
• Outer joins 

• Equi-join: type of inner join with the condition 
that has one or more multiple equality operators 
chained together with AND operator

• Nested loop algorithm comes with a high-
performance cost

• Quadratic time complexity: O(M*N)
• M,N – number of rows of the two tables joined

Condition that belongs to equi-join:

Condition that does not belong to equi-join:



Hash Join Algorithm

2022-02-06 Crate.io5

• The common method for processing equi joins in relational databases
• Consists of two phases: build phase and probe phase
• Build phase: scan the smaller table and store hash values of join attributes in the hash table
• Probe phase: each row in the other table is probed against the hash table
• Time complexity: O(M+N)
• Hash join algorithm is a good choice is the smaller table fits into memory



Hash Join Algorithm (1)

2022-02-06 Crate.io6

Build phase

1. For each row in the left table, calculate the 
hash and insert the row into the hash table.

2. Use chain hash table to avoid collisions.

….

rowi, rowi+1,…

….

Rows 
from left

store

Hash table

Probe phase

1. For each row in the right table, calculate the hash and 
look it up in the hash table.

2. If no entry is found, then skip that row.
3. If an entry is found, validate the join condition for each 

row in the list. If the join condition is true, emit the row.

….

rowi, rowi+1,…

….

Rows 
from right

lookup

Hash table

Validate 
condition

no, continue

emit combined row

yes



Hash Join Performance

2022-02-06 Crate.io7

• Five node cluster 32 GB RAM and 12 cores each
• Two tables, t1 and t2
• Two join queries:

• Matching all rows
• Matching one-fifth of all rows

• We run each query multiple times and pick the average execution time

Query # Rows Nested Loop (sec) Hash Join (sec) Improvement
Match all 10,000 1.74110 0.02187 79x

Match one fifth 10,000 2.53793 0.01922 132x

Match all 50,000 39.58197 0.04643 852x

Match one fifth 50,000 60,97238 0.04494 1,356x

Match all 100,000 158.63308 0.07921 2,002x

Match one fifth 100,000 242,13536 0.07922 3,056x

Match all 500,000 3986.60200 0.35814 11,131x

Match one fifth 500,000 timeout 0.77291 N/A



Block Hash Join Algorithm

2022-02-06 Crate.io8

• Hash join limitation: one of the tables has to fit in memory
• Our solution: block hash join algorithm
• Idea: divide a large dataset into smaller chunks and work on them in isolation

Build 
phase

Probe 
phase

Stop filling the hash 
table when it reaches 
the block size

Operating on the 
current block of rows

More 
rows

If there are remining 
rows left, go back to 
the build phase



Determining a Suitable Block Size

2022-02-06 Crate.io9

• Calculated at the start of every query iteration
• Using circuit breaker1 mechanism for setting the memory limit

• Set up manually or by CrateDB
• Terminates query if comes close to memory exhaustion

• CrateDB statistical information to estimate the size of a row in the left table
• The left table is split into blocks and the right table is read once for every block
• Optimization: size check of left and right table to switch the smaller table to the right

available	memory	=	circuitbreaker.limit - circuitbreaker.used
max	row	count	=	available	memory	/	estimated	row	size
block	size	=	Math.min (table	row	count,	max	row	count)

1https://zignar.net/2021/06/17/the-circuit-breaker-mechanism-in-cratedb/



Estimating Row Size

2022-02-06 Crate.io10

Hash Join

Hash Join

t1 rows t2 rows

t3 rows

• Collect rows from t1 and t2
• Perform a hash join
• Collect rows from t3
• Perform a hash join and produce a 

final rowset
• Composit of all columns from t1, t2

and t3
SQL query Logical plan

For rows in t1, t2 and t3:
• Find a corresponding shard
• Get shard size and number of rows in each shard (sys.shards table)
• Estimated row size = shard size/number of rows
• Pessimistic estimate!



Distributed Block Hash Join Algorithm

2022-02-06 Crate.io11

• Distribute blocks across CrateDB cluster and execute join in parallel using multiple nodes
• Our approach is inspired by grace hash join algorithm1

• General idea:
• Compute hash for every row in each shard for both tables 
• Matching rows have the same hash
• Assign each row to a node using the modulo operator2

• After partitioning, apply the block hash join algorithm
• This method ensures that rows with matching hashes are potentially located on the same node

1https://en.wikipedia.org/wiki/Hash_join#Grace_hash_join

2	node	=	hash	value	%	total	nodes



Distributed Block Hash Join: Example

2022-02-06 Crate.io12

• Two tables: t1 and t2, distributed on three nodes
• hash(t1.a) and hash(t2.a + t2.b)
• Assign rows to a node using the modulo operator
• Assemble rows on every node (local and received)
• Run the block hash join algorithm
• Merge results

N1

N2

N3

Block 
hash 
join

Block 
hash 
join

Block 
hash 
join

ha
sh

 %
 3

ha
sh

 %
 3

hash %
 3

Merge Result



Limitations

2022-02-06 Crate.io13

• Use case: joining subselect with LIMIT or OFFSET clause

• Single-node block hash join performs better than distributed version
• With distributed block hash join algorithm node is only processing a subset of data
• Before distribution, the single node must fetch 100 rows from t1
• Out of scope for now, a single-node version of the block hash join algorithm is used



Final Benchmarks

2022-02-06 Crate.io14

• Two tables t1 and t2 with five primary shards
• CrateDB cluster consisting of five nodes
• Tested two queries with three algorithms:

• Original nested loop algorithm
• Single node block hash join algorithm
• Distributed block hash join algorithm

Query # Rows Nested Loop (sec) Single Node (sec) Distributed (sec) Improvement

Match all 10,000 1.7411 0.01587 0.01447 120x
Match one fifth 10,000 2.5379 0.01422 0.01160 218x

Match all 50,000 39.5819 0.04643 0.04155 952x
Match one fifth 50,000 60,9723 0.04194 0.03068 1,987x

Match all 100,000 158.6330 0.08921 0.06773 2,342x

Match one fifth 100,000 242,1353 0.06922 0.05169 4,683x

Match all 500,000 3986.6020 0.35814 0.17324 23,011x

Match one fifth 500,000 timeout 0.31457 0.24539 N/A



Conclusions

2022-02-06 Crate.io15

• Implementation of the block hash join algorithm and its modification to run in parallel 
on multiple nodes

• The original nested loop algorithm performs reasonably well for tables with up to 
500k rows

• For tables with more than 50k rows, the distributed block hash join algorithm is 
significantly faster than the single node block hash join algorithm

• Distributed block hash join algorithm makes join operations up to 23k times faster
than nested loop algorithm

• To find more, please check our GitHub repository!

https://github.com/crate/crate

https://github.com/crate/crate
https://github.com/crate/crate


THANK YOU!


