
Fosdem Feb 6 2022

First Steps: Unfurl

A TOOL FOR MANAGING YOUR
DEVOPS INFRASTRUCTURE

What is Unfurl?

A command-line tool that:

1. Deploys applications using a high-level declarative
vocabulary so you can describe your infrastructure
independent of cloud provider details.

2. Manages your deployments (configuration, tools,
history, state) in Git.

THE BASICS:
● Self-contained command-line tool that

runs locally: no server or agent
software involved

● All state is saved in user-editable
YAML configuration files: no database

● Manages git repositories for
configuration and artifacts

✔ OPEN SOURCE

✔ COMMUNITY-DRIVEN

✔ DECENTRALIZED
 (VIA GIT)

✔ STANDARDS- BASED
 (TOSCA)

The Basics

What it does

Unfurl tracks your:

● Configuration
● Secrets
● Code dependencies
● Software version
● Deployment history

… all in git!

Works with your tools

Includes out-of-the box support for

● Terraform
● Ansible
● Shell commands
● Helm

● OctoDNS
● Kubernetes
● Docker
● Supervisor

https://docs.unfurl.run/configurators.html#terraform
https://docs.unfurl.run/configurators.html#ansible
https://docs.unfurl.run/configurators.html#shell
https://docs.unfurl.run/configurators.html#helm
https://docs.unfurl.run/configurators.html#dns
https://docs.unfurl.run/configurators.html#kubernetes
https://docs.unfurl.run/configurators.html#docker
https://docs.unfurl.run/configurators.html#supervisor

Motivation: Imagine if you could freely reuse, modify,
and fork live services just like open source code.

SIMPLICITY:
Hide complexity, no need

to be a DevOps guru

FLEXIBILITY:
Easily change infra as your

needs grow

NO LOCK-IN:
Open source

 All data stored in Git
Cloud Independence

Why Use Unfurl?

Why Use Unfurl?

No single DevOps tool provides a complete solution, coding is
needed to integrate.

Helm Terraform/Pulumi Ansible
Chef/Puppet
/Salt CI/CD/Gitops Docker

Packaging
Kubernetes
only No No No No Minimal

Provisioning No Coding Lo-code No No No
Day two Operations No No Lo-code Coding No No

Change Management
Kubernetes
only Enterprise-only No No Yes No

How it works

DEMO

Unfurl Processing Model

“unfurl deploy” Execute Plan Record Results

unfurl.yaml

service-template.yaml

Local config +
secrets

TOSCA
Spec

ensemble.yaml

Step 1: delegate to
isolated runtime

Step 2: invoke
configurators

Step 3: update
status and commit
changes to git

Anatomy of ensemble.yaml

Environments: Describes the environment that
the Unfurl deployment process runs in, e.g.

- Tools and repository locations
- Credentials

Spec: TOSCA service template and explicitly
declared instances

Status: Deployed instances and their current status

Lock: Record precise digests and versions of the
artifacts and repositories used during deployment.

Organize Your Deployment Environments

Unfurl allows you to collect your
configuration information and
organize them by environment.

production:
 locals:
 schema:
 prop2:
 type: number

environments:

Spec : Model Your Cloud Infrastructure

spec:
 service_template:
 topology_template:
 inputs:
 rootdomain:
 type: string
 default: unfurl.run

SPEC

Combine & connect
cloud-independent building blocks.

Deploy implementations that
match your infrastructure and configuration.

SERVICE TEMPLATE DEPLOYMENT TEMPLATE

...

Compute

Postgresql

DNS

...AWS
RDS

CloudS
QL

Self-
Hosted

Route
53

EC2 Dev
Env’t

Zone
Edit

Go
Daddy

...

A Standard
developed by OASIS

What is TOSCA?

● Used manage applications in cloud
and telecom network management

● YAML vocabulary that describes:
○ The architecture of a cloud

application or service
○ The infrastructure the application

requires in order to operate
○ The operations for deploying and

managing the application

TOPOLOGY AND ORCHESTRATION
SPECIFICATION FOR CLOUD APPLICATIONS

KEY CONCEPTS:

● Nodes
● Operations
● Relationships
● Requirements
● Capabilities
● Configurations
● Policies

Tier (Group Type)

TOSCA DESCRIBES THE TOPOLOGY
OF THE DEPLOYMENT OF CLOUD
APPLICATIONS AND SERVICES

Topology – Define Topology with Nodes and Relationships

Source node

Node_Type_A

Target node

Node_Type_B

Requirement

connect_relationship

ConnectsTo
Capability

Nodes - are the resources
or components that will
be materialized or
consumed in the
deployment topology

Relationships
express the dependencies
between the nodes (not the
traffic flow)

Node templates to
describe components in
the topology structure

Requirement - Capability
Relationships can be
customized to match specific
source requirements to target
capabilities

Groups
Create Logical,
Management or Policy
groups (1 or more nodes)

Relationship templates to
describe connections,
dependencies, deployment ordering

Portability – TOSCA Orchestrators find “Best Match” during
deployment

TOSCA APPLICATIONS ARE PORTABLE TO
DIFFERENT CLOUD INFRASTRUCTURES

Application Requirements
TOSCA

Orchestration

TOSCA Service Template

Storage

Compute1

DB

Compute2

App

Network

Scaling
Policy

Cloud
Provider C

Cloud
Provider A

Cloud
Provider B

By expressing application
Requirements independently
from cloud provider Capabilities

& OptimizationAutomatic Matching

Infrastructure Capabilities

19

Capabilities

Requirements

status and lock sections

status:
 inputs:
 rootdomain: unfurl.run
 outputs: {}
 instances:
 staging_site:
 template: staging_site
 readyState:
 local: ok
 state: created

lock:
 runtime:
 unfurl:
 version: 0.1.1.dev20
 digest: 0.1.0-29-gf41588a-dirty
 toolVersions:
 terraform:
 - 0.12.29
 repositories:
 - name: self
 url: git-local://5fd0f9...d0f8e80429:self/.
 revision: 6c1706140dce9338182ac46f37d04b5397ce0723-dirty

Reproducible Ensembles

 Vision: A Free and Open Cloud

adam@onecommons.org

www.unfurl.run
github.com/onecommons/unfurl
www.onecommons.org

THANK
YOU!

mailto:adam@onecommons.org

