
Copyright(c)2022 NTT Corp. All Rights Reserved.

P2P Container Image Distribution on IPFS 
With containerd and nerdctl

Kohei Tokunaga, NTT Corporation

FOSDEM 2022 (February 6)



Copyright(c)2022 NTT Corp. All Rights Reserved.

Summary

2

l nerdctl experimentally supports P2P image distribution on IPFS

• simple UI/UX for P2P

• allows IPFS-agnostic tools to get images from IPFS (e.g. BuildKit, Kubernetes)

• fast image distribution from bandwidth-limited seeder

l Combination with existing OCI image distribution techniques

• lazy pulling of eStargz

• distributing encrypted image by OCIcrypt

Registry

nerdctl push nerdctl pull

pusher node receiver node 

peer peer

nerdctl push nerdctl pull

Registry-based image distribution IPFS-based image distribution

IPFS



Copyright(c)2022 NTT Corp. All Rights Reserved.

Problems in image distribu1on

3

Registry

push pull

pusher node receiver node 

l Pulling is time-consuming 
• Pulling packages accounts for 76% of container start 

time [Harter et al. 2016]
• Can be slower under limited bandwidth between 

registry and node

l Images can’t be shared if no access to the registry (e.g., 
registry outage, rate limited, no access to the internet, …)

https://www.usenix.org/conference/fast16/technical-sessions/presentation/harter


Copyright(c)2022 NTT Corp. All Rights Reserved.

IPFS-based P2P image distribution with nerdctl

4

l nerdctl CLI (>= v0.14) of containerd experimentally supports image distribution on IPFS

• Images are shared in P2P manner without relying on the centralized registry

• Simple UI/UX for P2P image distribution

• Fast image distribution from bandwidth-limited seeder (discussed later)

Registry

nerdctl push nerdctl pull

pusher node receiver node 

peer peer

nerdctl push nerdctl pull

Registry-based image distribution IPFS-based image distribution

IPFS



Copyright(c)2022 NTT Corp. All Rights Reserved.

nerdctl: Docker-compatible CLI of containerd

5

l Has same UI/UX as Docker

https://github.com/containerd/nerdctl

l Supports cutting-edge features
• rootless
• lazy-pulling (eStargz)
• encrypted images (OCIcrypt)
• P2P image distribution (IPFS)
• container image signing and verifying (cosign)

l Adopted by lima and Rancher Desktop
• container management tool for desktop
• https://medium.com/nttlabs/containerd-and-lima-39e0b64d2a59

nerdctl CLI

nerdctl run -it --rm alpine

nerdctl build -t foo /dockerfile-dir

nerdctl push ghcr.io/ktock/myalpine:latest

containerd API

https://github.com/containerd/nerdctl
https://medium.com/nttlabs/containerd-and-lima-39e0b64d2a59


Copyright(c)2022 NTT Corp. All Rights Reserved.

IPFS

6

l P2P and content addressable data sharing protocol

l No central server is needed

l Content addressable by CID

h@ps://ipfs.io

ipfs add myfile.txt ipfs get QmZULkCELmmk5XNfCgTnCyFgAVxBRBXyDHGGMVoLFLiXEN

Content Addressable by CID (identifier based on the content’s hash)

peer peer
IPFS

https://ipfs.io/


Copyright(c)2022 NTT Corp. All Rights Reserved.

Configura)on of OCI image for IPFS

7

{
“schemaVersion”: 2,
“manifests”: [

{
“mediaType”: “application/vnd.oci.image.manifest.v1+json”,
“digest”: “sha256:f6eed19a2880f1000be1d46fb5d114d094a59e350f9d025580f7297c8d9527d5”,
“size”: 506,
“urls”: [

“ipfs://bafkreihw53izukea6eaaxyoun625cfgqsssz4niptubflahxff6i3fjh2u”
],

・・・

application/vnd.oci.image.
manifest.v1+json

application/vnd.oci.
image.config.v1+json

application/vnd.oci.image.
layer.v1.tar+gzip

CID

CID

{
"mediaType": "application/vnd.oci.image.index.v1+json",
"digest": "sha256:28bfa1fc6d491d3bee91bab451cab29c747e72917efacb0adc4e73faffe1f51c",
"size": 313,
"urls": [

"ipfs://bafkreibix6q7y3kjdu565en2wri4vmu4or7hfel67lfqvxcoop5p7ypvdq"
]

}

ipfs:// bafkreicq4dg6nkef5ju422ptedcwfz6kcvpvvhuqeykfrwq5krazf3muze

application/vnd.oci.image.
index.v1+json

CID

Each item in OCI image supports arbitrary URLs as the data source
→ we store CID (formed as IPFS URL)

l Constructing DAG by CIDs 
l Image is referenced by CID of the topmost “OCI descriptor” JSON

OCI descriptor JSON



Copyright(c)2022 NTT Corp. All Rights Reserved.

Adding an image to IPFS

8

nerdctl push ipfs://ubuntu:20.04

l nerdctl supports ipfs:// prefix for an arbitrary image name

l nerdctl pushes the image to IPFS instead of registry
• Automatically configures the OCI image for IPFS (see previous slide)

l The image is distributed on IPFS in a p2p manner without registry

peer peer
IPFS



Copyright(c)2022 NTT Corp. All Rights Reserved.

Pulling an image from IPFS

9

nerdctl pull ipfs://bafkreicq4dg6nkef5ju422ptedcwfz6kcvpvvhuqeykfrwq5krazf3muze

l ipfs://CID references an image on IPFS

l nerdctl gets the image from IPFS instead of the registry

l The image needs to be configured for IPFS
• “nerdctl push ipfs://” automatically does this

nerdctl run ipfs://bafkreicq4dg6nkef5ju422ptedcwfz6kcvpvvhuqeykfrwq5krazf3muze

peer peer
IPFS



Copyright(c)2022 NTT Corp. All Rights Reserved.

Building image based on images on IPFS

10

FROM localhost:5050/ipfs/bafkreicq4dg6nkef5ju422ptedcwfz6kcvpvvhuqeykfrwq5krazf3muze

RUN echo hello > /hello

Dockerfile

l localhost:5050/ipfs/CID references an image on IPFS
• Dockerfile should support “ipfs://CID” image reference in the future

l Base image is acquired from IPFS

l The result image can also be pushed to IPFS using “nerdctl push ipfs://”

peer peer
IPFS



Copyright(c)2022 NTT Corp. All Rights Reserved.

IPFS-based image distribution for IPFS-agnostic tools

11

l Provides a read-only localhost registry backed by IPFS
• image is accessible via localhost:5050/ipfs/CID

l IPFS-agnostic tools (e.g. Kubernetes) can pull images from IPFS
• nerdctl build (backed by BuildKit) uses this functionality 

nerdctl ipfs
registry

・
・
・

IPFS-agnostic
tools

peer
IPFS

node

RO Registry API
(via localhost)

nerdctl ipfs registry subcommand

localhost:5050/ipfs/bafkreicq4dg6nkef5ju422ptedcwfz6kcvpvvhuqeykfrwq5krazf3muze

ipfs://bafkreicq4dg6nkef5ju422ptedcwfz6kcvpvvhuqeykfrwq5krazf3muze

Kubernetes CRI

BuildKit



Copyright(c)2022 NTT Corp. All Rights Reserved.

Example: node-to-node image sharing on Kubernetes

12

nerdctl ipfs registry

DaemonSet

Pull from IPFS

nerdctl ipfs registry

DaemonSet

Pull from IPFS

node node

l “nerdctl ipfs registry” can be used 
for node-to-node image sharing

l In the future, Kubernetes should support 
“ipfs://CID” image reference

l Example configuration: running ipfs
daemon as DaemonSet on each node

https://github.com/containerd/nerdctl/pull/678

Kubernetes cluster IPFS

IPFS node (seeder)

l nerdctl build
l nerdctl push ipfs://…
l ・・・

Build image, push it to IPFS, …

share images
among nodes

IPFS daemon IPFS daemon

IPFS IPFS
・・・

Distribute images via IPFS

(WIP)

https://github.com/containerd/nerdctl/pull/678


Copyright(c)2022 NTT Corp. All Rights Reserved.

Image distribution latency

13

l GKE v1.21.5-gke.1302 (20 nodes)

• instance: e2-standard-8 (asia-northeast1-a)

• OS: ubuntu_containerd (upgraded containerd to v1.5.8 manually)

l private seeder/registry (1 node)

• instance: e2-standard-8 (asia-northeast1-a)

• OS: Ubuntu 20.04

l image: ghcr.io/stargz-containers/jenkins:2.60.3-org (726.4 MiB)

l Measured the worst time to take for pull with configuring bandwidth using linux tc

l commit: https://github.com/containerd/nerdctl/commit/3b5ed0df186d05d986b9cdb7c47773f29febed29

• ipfs v0.11.0 (k8s nodes), ipfs v0.10.0 (seeder), nerdctl bb682bc

l benchmarking script: https://github.com/ktock/stargz-snapshotter/tree/nerdctl-ipfs-registry-kubernetes-

benchmark/script/nerdctl-ipfs-registry-kubernetes-benchmark

Measured Zme to take to distribute images under several bandwidth situaZons

IPFS node (seeder) 20 nodes Kubernetes clusterIPFS
nodes share images via IPFS

container registry
registry API 20 nodes Kubernetes cluster

nodes pull images from registry

several bandwidth situations

several bandwidth situations

https://github.com/containerd/nerdctl/commit/3b5ed0df186d05d986b9cdb7c47773f29febed29
https://github.com/ktock/nerdctl/commit/bb682bc46b00d41dcd26479260becfc4db7168b9
https://github.com/ktock/stargz-snapshotter/tree/nerdctl-ipfs-registry-kubernetes-benchmark/script/nerdctl-ipfs-registry-kubernetes-benchmark


Copyright(c)2022 NTT Corp. All Rights Reserved.

0

10000

20000

30000

40000

50000

60000

70000

1 5 10 15 20

tim
e 

to
 d

ist
rib

ut
e 

im
ag

e 
(m

se
c)

number of images to pull

955 Mbits/sec

registry ipfs

0

20000

40000

60000

80000

100000

120000

1 5 10 15 20

Jm
e 

to
 d

ist
rib

ut
e 

im
ag

e 
(m

se
c)

number of images to pull

478 Mbits/sec

registry ipfs

0

5000

10000

15000

20000

25000

1 5 10 15 20

tim
e 

to
 d

ist
rib

ut
e 

im
ag

e 
(m

se
c)

number of images to pull

3.82 Gbits/sec

registry ipfs

Image distribution latency

14

l On lower bandwidth with many images, IPFS distributes images faster than registry
l On higher bandwidth or with small number of images, IPFS can be slower than registry 

• will work on further invesJgaJon and miJgaJon

lower is better lower is better lower is better



Copyright(c)2022 NTT Corp. All Rights Reserved.

Combination with existing
image distribution techniques

15



Copyright(c)2022 NTT Corp. All Rights Reserved.

Lazy pulling: eStargz

16

l Lazy pulling: Starting up containers without waiting for the pull completion
• Each chunk/file in the image is downloaded on-demand

l eStargz: OCI-compatible image format for lazy pulling with prefetch support
• Can be lazily pulled from standard registries

l Stargz Snapshotter: Plugin of containerd for enabling lazy pulling

https://github.com/containerd/stargz-snapshotter

0 5 10 15 20 25 30 35 40 45

estargz

estargz-noopt

legacy

Start up time of python:3.7 (print “hello”)

pull create run [sec]

Figure from “Faster Container Image Distribution on a Variety of Tools with Lazy Pulling - Kohei Tokunaga & Tao Peng. 
KubeCon+CloudNativeCon North America 2021. https://sched.co/lV2a “

https://github.com/containerd/stargz-snapshotter
https://sched.co/lV2a


Copyright(c)2022 NTT Corp. All Rights Reserved.

Lazy pulling (eStargz) on IPFS

17

l eStargz can be stored to IPFS
l Stargz Snapshotter supports lazy pulling of eStargz from IPFS

• mounts eStargz image from IPFS to container’s rootfs
l Chunks are fetched lazily thus hopefully faster cold-start 

https://github.com/containerd/stargz-snapshotter

proc

container

Node

Stargz Snapshotter

Fetching files/chunks on demand Moun@ng rooAs as FUSE

Lazy pulling
eStargz
image

IPFS Peer

nerdctl

https://github.com/containerd/stargz-snapshotter


Copyright(c)2022 NTT Corp. All Rights Reserved.

Image encryption: OCIcrypt

18

l nerdctl supports encryp<on/decryp<on of image layers with key pair

l OCIcrypt (imgcrypt plugin for containerd) is used

Registry

nerdctl image encrypt nerdctl image decrypt 

image

image

https://github.com/containerd/imgcrypt

Public key Private key

encrypts an image decrypts an image

https://github.com/containerd/imgcrypt


Copyright(c)2022 NTT Corp. All Rights Reserved.

Image encryption (OCICrypt) on IPFS

19

l Encrypted image can be pushed to IPFS

l Configuration of the image for IPFS (urls field) is done by 
“nerdctl push ipfs://”

nerdctl image encrypt nerdctl image decrypt 

image

imageIPFS
Public key Private key



Copyright(c)2022 NTT Corp. All Rights Reserved.

Future works

20

l Performance improvements
• Especially on high bandwidth environment with small number of images
• Pulling hangs when the searching image isn’t found on IPFS

l Enabling “ipfs://CID” reference on a various tools (e.g. BuildKit, Kubernetes, …)

l CID reproducibility
• “nerdctl push ipfs://” will produce different CIDs for different configurations of IPFS

• e.g. different chunk size

l Higher availability of data
• “pinning services” can be used maybe

l …



Copyright(c)2022 NTT Corp. All Rights Reserved.

Related projects about image distribution on IPFS

21

l ipcs: https://github.com/hinshun/ipcs
• Proposed by Edgar Lee (Netflix)
• containerd content store plugin backed by IPFS
• Focuses on content deduplication but incompatible to OCI image

l ipdr: https://github.com/ipdr/ipdr
• Proposed by Miguel Mota
• Docker registry backed by IPFS
• No native integration with runtime (requires a dedicated CLI)
• Lazy pulling unsupported

l EdgePier[1]
• Proposed by Soeren Becker, et al.
• Integrated ipdr (mentioned in the above) with Kubernetes
• Fast image distribution under bandwidth-restricted environment
• No OSS implementation

[1] Soeren Becker, et al."EdgePier: P2P-based Container Image Distribution in Edge Computing Environments". IEEE International Performance 
Computing and Communications Conference 2021

https://github.com/hinshun/ipcs
https://github.com/ipdr/ipdr


Copyright(c)2022 NTT Corp. All Rights Reserved.

Summary

22

l nerdctl experimentally supports P2P image distribution on IPFS

• simple UI/UX for P2P

• allows IPFS-agnostic tools to get images from IPFS (e.g. BuildKit, Kubernetes)

• fast image distribution from bandwidth-limited seeder

l Combination with existing OCI image distribution techniques

• lazy pulling of eStargz, image encryption by OCIcrypt

Registry

nerdctl push nerdctl pull

pusher node receiver node 

peer peer

nerdctl push nerdctl pull

Registry-based image distribution IPFS-based image distribution

IPFS

Thanks to Akihiro Suda (NTT) for the discussion!


