
How I learned to stop worrying
and love Flatcar‘s auto update

| 2022-02-06FOSDEM´22

Hi, I’m Thilo
Thilo Fromm
Engineering manager, Microsoft

Github: t-lo
Twitter: ThiloFM
Email: thilofromm@microsoft.com

http://t-lo.github.io/
https://twitter.com/ThiloFM
mailto:thilofromm@microsoft.com

What’s in the box?

This is an operations talk.
It is about updating the OS on your cluster. Automatedly.

It might be a tad boring.
Because OS updates should be.
But sometimes aren’t.

(The talk is also about Flatcar Container Linux.
Because we implement the good practices presented today)

Image “Macaca fuscata juvenile yaw ning ” originally posted to Flickr by dice-kt at https://f lickr.com/photos/39676602@N06/14147968061

licensed under the Creative Commons Attribution-Share Alike 2.0 Generic license. No modif ications have been made.

https://flickr.com/photos/39676602@N06/14147968061
https://creativecommons.org/licenses/by-sa/2.0/deed.en

Why even?

Stability and Performance

Pro-active security

Compliance

Nothing ever comes for free

Stability and Performance vs. new issues / bugs

Pro-active security vs. supply chain attacks

Compliance vs. maintenance overhead

But we can lower the costs

Keep changes manageable

Minimise blast radius of impacts

Ensure mistakes can be forgiven

Enter Flatcar Container Linux

Released as Image
Updates / patches are also full images
All releases undergo thorough testing

Stabilisation process makes Canaries easy to support
New major releases go through stabilisation in stages
(“channels”- Alpha -> Beta -> Stable)

Updates are atomic, roll-backs are built-in

Keep changes manageable

Flatcar releases / updates always come as an image
No package management, no version diversity, no diversity creep

Keep changes manageable

Flatcar releases / updates always come as an image
No package management, no version diversity, no diversity creep

Keep changes manageable

Flatcar releases / updates always come as an image
No package management, no version diversity, no diversity creep

Keep changes manageable

Flatcar releases / updates always come as an image
No package management, no version diversity, no diversity creep

Keep changes manageable

Flatcar releases / updates always come as an image
No package management, no version diversity, no diversity creep

Changesets are tested
Updates can be vetted before roll-out
No difference between new nodes and updated nodes
Package-focused distros: Do your own releases (w/ distro binary packages).

Create your own changesets / do custom gatekeeping
Operate your own mirror / package server
Run changesets through custom test harness before roll-out

Minimise blast radius

Test new changesets (“release testing”) for the main feature you use
basic provisioning + configuration
managing containers
Kubernetes
cluster networking

Use pre-prod and/or Canaries in prod clusters
Pre-prod can be expensive
Single (or small number of) nodes in prod

to validate your specific use case

Minimise blast radius

Flatcar release channels support validating your use case:
❏ Any major change in a changeset mandates a new major release.
❏ Major releases land in Alpha first.

Alpha is for quick iteration.
Each Alpha must pass full testing.

❏ Beta ships meaningful changesets.
Beta is for user / use case validation.

❏ Stable ships production-ready
changesets.

Minimise blast radius

Use canaries in your production clusters.

Minimise blast radius

Use canaries in your production clusters.
New Alpha: 3066.0.0 – not actionable / take note

Minimise blast radius

Use canaries in your production clusters.
New Alpha: 3066.0.0 – not actionable / take note
New Beta : 3066.1.0

Minimise blast radius

Use canaries in your production clusters.
New Alpha: 3066.0.0 – not actionable / take note
New Beta : 3066.1.0 – lands on canary

Minimise blast radius

Use canaries in your production clusters.
New Alpha: 3066.0.0 – not actionable / take note
New Beta : 3066.1.0 – soak time

Minimise blast radius

Use canaries in your production clusters.
New Alpha: 3066.0.0 – not actionable / take note
New Beta : 3066.1.1 – Fix

Minimise blast radius

Use canaries in your production clusters.
New Alpha: 3066.0.0 – not actionable / take note
New Beta : 3066.1.1 – Soaked

Minimise blast radius

Use canaries in your production clusters.
New Alpha: 3066.0.0 – not actionable / take note
New Beta : 3066.1.1 – Soaked
New Stable: 3066.2.0

Minimise blast radius

Release testing cannot cover all use cases (breadth, not depth)

Managing our own releases allows us to effectively canary changesets
allowing for in-depth validation

Issues are detected early and resolved before mass roll-out

Beta canaries are expected to have higher failure rate / regular roll-backs
(but it’s “some pain” vs. “all the pain”)

Make Mistakes forgivable

For regular updates we need a roll-back strategy
i.e. switch back to previous changeset

“No one wants backup, everybody wants restore”

Make Mistakes forgivable

For roll-backs, Flatcar utilises an A/B partitioning scheme

Make Mistakes forgivable

“Root” partition is r/w, for configs + user-supplied changes
“Usr” partition includes all binaries, is R/O.

Make Mistakes forgivable

Updates are downloaded to “B” partition (in the background)

Make Mistakes forgivable

Applying the update needs a reboot.
The reboot will boot into the updated partition exactly once.

Make Mistakes forgivable

Only after successful boot + some wait time, B is activated persistently.

On error, the system just reboots (into “A” which is still active).

Make Mistakes forgivable

Atomic updates by use of a separate partition
Updates downloaded, staged in background, during regular operation
Minimal downtime (i.e. no “safe mode” to install packages)
Roll-back via a simple reboot

Package-focused distros: mount the inactive partition
on update, chroot + install updates to inactive partition
copy / overwrite / migrate user configs
reconfigure bootloader (savedefault / grub2-once)

Using changesets, we can roll forward and roll back our OS like an application

Scale out

We discussed
changesets
canaries
and atomic updates / roll-backs

Effectively turning the OS into just another application.

But how do we automate all this?

Scale out

Glue:
Check for updated changesets, download and install
reboot , or signal reboot request

Infrastructure:
Image build infrastructure
Test infrastructure + test harness
Image / update server (for changesets)

and /or package cache

Scale out

Cluster-wide orchestration via reboot daemon
Drain nodes
Only reboot one node at a time

Implementations
Kured – Kubernetes; daemonset, acts on a single file being present
FLUO – Kubernetes; daemonset + operator for update_engine
locksmith – etcd, for custom clusters w/o Kubernetes

https://github.com/weaveworks/kured/issues/63
https://github.com/flatcar-linux/flatcar-linux-update-operator
https://github.com/flatcar-linux/locksmith

Thank you 🙏

Read the docs - https://www.flatcar.org/docs/latest/

Chat with us – https://app.element.io/#/room/#flatcar:matrix.org
Contribute – https://github.com/flatcar-linux/Flatcar
Join our monthly calls - https://github.com/flatcar-linux/Flatcar/#monthly-
community-meeting-and-release-planning

This slide deck is released under Creative Commons Share-Alike 2.0 Generic.

https://www.flatcar.org/docs/latest/
https://app.element.io/
https://github.com/flatcar-linux/Flatcar
https://github.com/flatcar-linux/Flatcar/
https://creativecommons.org/licenses/by-sa/2.0/deed.en

