
Challenges and Opportunities in
Performance Benchmarking of
Service Mesh for the Edge

Mrittika Ganguli (mrittika.ganguli@intel.com)

Sunku Ranganath (sunku.ranganath@intel.com)

Subhiksha Ravisundar, Abhirupa Layek, Dakshina Ilangovan, Edwin Verplanke

FOSDEM 2022 2

Agenda

▪ Service mesh vs. Edge deployment requirements

▪ Challenges at each layer of networking

▪ Experiment methodology and Results

▪ Micro-architecture analysis

▪ Summary and call to action

FOSDEM 2022 3

Edge Native Platforms & Applications

Latency
expectation

Edge Services
(network functions, AI, media, enterprise services)

Industrial Transportation RetailHealthcare

On Premises Edge

Unified Platforms Across Different Type of
Edge Deployments

Regional
Data Center

Access Edge Near Edge

Key challenges to overcome

▪ Mobility & Federation across MEC domains

▪ Resource awareness & optimal performance
for low latency applications

▪ Edge Native Application scalability

Bandwidth
expectation

FOSDEM 2022 4

Conceptual Service Mesh

FOSDEM 2022 5

Edge Application Requirements vs. Service Mesh

Attribute Edge Native Applications Service Mesh

Awareness
& Discovery

Registered & Discoverable, geolocation for enhanced QoS Side-car proxy to discover set of available services within a cluster and
additional meta-data such as QoS or location or traffic requirements, etc.,
that the application utilize during run-time

Resiliency Ability to self-heal and be resilient across application restarts or
heavy load conditions or unpredictable failure situations

Health checks, traffic reroutes, circuit breaking functionality are all taken
care by the mesh control plane

Scalability Ability to scale as per traffic and load conditions on-demand Service mesh can threshold the traffic surges and rerouting the traffic to
application pods that can handle the increase in requests

Low-latency
offloads

Offload the services from end devices, to edge environment to
the cloud compute infrastructure on need basis to satisfy low
latency requirements

Facilitate interaction between clusters, as well can utilize hardware offload
constructs such as offloads to Smart-NIC or utilize acceleration hardware
for lower RTT

Security &
Privacy

Necessary security network functions are introduced across the
Edges to provide secure boundaries across Edge to Cloud
communication continuum

Service mesh control plane can help in this domain by offloading
communication security aspects such as TLS termination, Ipsec offloads,
etc., using side-car proxies

FOSDEM 2022 6

Cloud Native Network Characterization

▪ Microservice architectures are decoupling applications from
maintaining & managing infrastructure operations to only
perform required business logic

▪ Kubernetes CNI operates at Layer 3 while Service Mesh takes
care of Layer 4 to Layer 7 communication

▪ Service mesh deployment uses iptables to establish network
connections between pods and nodes, managing the
networking and port forwarding rules

▪ Kubernetes pods can scale up to 1000, creating thousands of
IP addresses which can be efficiently managed by iptables
rules

▪ Attributes of edge aware applications could be directly
attributed to functionality of a typical service mesh

iptables

iptables

• Each layer adds overhead.
• Tail latencies and microarchitectural analysis will drive

optimizations required and offloads that address the
performance bottlenecks

FOSDEM 2022 7

How was benchmarking attempted

The experiment’s goals are to:
1. Measure envoy front proxy performance by increasing the number of queries per second.
2. Increase the number of client connections to obtain maximum QPS resolved successfully
3. 1 & 2 tested and compared on a 48 core Xeon vs a 32 core Xeon with no core pinning.
4. Core scaling experiments done in 20 core Xeon with increasing QPS, connections and clones

FOSDEM 2022 8

Iptables: Performance overview and bottlenecks

8

▪ Performance Overview
• Throughput drops and latency increases with

number of rules. Latency increase with no. of rules

• Performance scales linearly with cores

• Additional NAT rules over filter rules has minimal
impact on performance.

▪ Bottlenecks
• Time to load 100k rules is approx. 2hrs 45min

• Filter table does a linear search. Position of rule
matters

▪ Workarounds/ Next Steps
• Ipset, nftables, Ebpf filter

• Hyperscan implementation

• Offloading iptables functionality

FOSDEM 2022 9

Summary for 100 uSvcs and 64 connections

Envoy
Ingress proxy

Bare metal

1 core 4 cores

2 cores

Bare metal pinned cores

CPU QPS Latency
(ms)

NBW
Mb/s

Xeon1 7.5 k 13.6 250

Xeon 2 12.1k 9.5 370

core QPS Latency
(ms)

NBW

1 200 1300 7 Mbps

2 400 900 18 Mbps

4 1300 1000 54 Mbps

1

2

metric K8s + Calico (no
proxy) – 10 cores

K8s + Calico + Istio +
Envoy – 10 cores

Client
in VM

Host
client

Client in
VM

Host
client

QPS 17 k 23k 5k 9k

Latenc
y (P99)

7 ms 4 ms 15 ms 18 ms

NBW
(iperf)

2 Gbps 9.6
Gbps

0.8 Gbps 7 Gbps

FOSDEM 2022 10

Performance in Virtualized Environments

FOSDEM 2022 11

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35 40

L
1

 C
o

u
n

te
rs

 %

no of uservices

L1 Counters multicore

Core 8 Frontend Bound % Core 9 Frontend Bound %
Core 10 Frontend Bound % Core 11 Frontend Bound %
Core 8 Core Bound % Core 9 Core Bound %
Core 8 Memory Bound % Core 9 Memory Bound %
Core 10 Core Bound % Core 11 Core Bound %

Micro-Architecture analysis of 40uSvcs multi-
core

• Frontend Bound % decreases with increase in number of uservices
• Core Bound and Memory Bound % increases with increase in number of uservices
• L1 and L3 Bound % generally increases for core 8 and decreases for core 9 with number of uservices
• L1 and L3 Bound % decreases for core 10 and 11 with the number of uservices.
• Mem Bound % increases for front proxy but at a larger scale for side car+ flask with number of uservices
• L3 cache misses increase for 0.9-31%

FOSDEM 2022 12

CPU cycle analysis

Layer Description %

kernel Linux
forwarding

20%

kernel Entry Linux
switching

20%

Other
layers

Other
functions

60%

1 core multiple clones front
proxy or BE sidecar

Layer Description %

kernel Linux
forwarding

20%

kernel Entry Linux
switching

13%

kernel Libc 16%

Envoy Envoy static
match

22-
30%

Envoy Buffer+water
mark

18-
30%

1 core sidecar +app 1 clone or
multiple clones

Layer Description %

kernel Linux
forwarding

20%

kernel Entry Linux
switching

13%

kernel Libc 16%

Envoy Envoy-
memcpy

20%

multiples core multiple clones
front proxy or BE sidecar

Other
layers

Other
functions

60%

FOSDEM 2022 13

Summary
• Service mesh forms a very important software architectural framework for Edge computing that can

directly correlate with ETSI MEC framework.

• Due to the performance impact of introducing service mesh and complexity across kernel stack and
deployment, the immediate utilization of off the shelf service mesh software components for production
usage at the Edge is delayed.

• To deploy microservices with a service mesh it is important to identify the right profiling environment to
estimate what QPS to latency ratio is tolerable for the number of clones deployed.

• To maximize CPU usage number of microservices may need to be increased but to keep a 99-percentile
latency in milliseconds, number of concurrent client connections need to be lower.

• EMON and TMAM analysis can help in initial workload characterization but bottlenecks in the CNI layer for
bridging and envoy TCP stack traversals through Linux kernel need to be profiled and identified. Calico
iptables rule processing analysis revealed a bottleneck in lookup for NAT table traversals.

• Although efforts & proposals are under way in CNCF’s Network SIG to standardize some of the traffic
generator tools to have consistent performance across test runs, the biggest challenge is to address the
need for multiple layers of benchmarks and address the challenges.

FOSDEM 2022 14

Call To Action

▪ Build one benchmark which will

1. Follow a standard layer 7 benchmarking process with multiple KPIs and
configuration modes,

2. Model different workload patterns

3. Run on one system and generate primitive based data which can be used
to estimate the cluster capacity and performance need

4. Address different virtualized environment setups with resource (cores,
memory and queues) combinations to model different application
infrastructure environments

