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Overview

e Serverless computing
e Unikernels as the basis for lightweight function execution

e Current state & missing pieces

o "echo" demo on OpenFaa$S with solob

e ML workloads, hardware acceleration & unikernels

o image classification demo on OpenFaa$S with unikraft & vAccel



Serverless Computing

e Managed infrastructure orchestration by the service provider
e [ffortless scaling (scale-out)
e [ocus on Business logic

e Deploy code without provisioning the infrastructure
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Serverless Computing

e (Code deployed as a function with its dependencies
e Event-driven execution
e Dilling model: actual resource usage vs idle

e Stateless execution oriented to:

O microservices

o triggered actions
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Serverless Computing

e mostly deployed on Cloud infrastructure

e mode of execution seems useful for Edge workloads as well

o e.g. ML inference for fast decision making

e currently backed by containers
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Serverless Computing - common workflow

e control plane:
o API gateway/scheduler/queue worker

e functions:
o main init function / endpoint (provider)
m setup environment (interface/endpoint init)
m setup handler (to trigger user code)
o handler function (user)
m spawned on invocation (via endpoint trigger)
m actual code execution

e pbundled in container images:

m spawned (sandboxed or plain)
m listen to events via the endpoint/gateway




Serverless Computing - OpenFaa$S in k8s
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Serverless Computing - containers

e currently backed by containers: multi-tenancy issues
(security/data leaks)

e current solution: sandbox containers using VMs (hardware
extensions to isolate workloads).

e But VMs:
o exhibit non-negligible overhead (mem/mgt footprint)

o do not facilitate hardware access / device sharing

ﬁ N nubificus



Serverless Computing - containers

e But VMs:

o exhibit non-negligible overhead (mem/mgt footprint)

o do not facilitate hardware access / device sharing




Serverless Computing - sandboxed containers

e overhead associated with VM sandboxing:

o boot time (cold boot) vs warm boot / invocation (checkpointing)
o memory footprint (Edge devices)

o VM lifecycle / state (VMM, dependencies)

e complicated stack:

m VMM, kernel/ramdisk/rootfs/libcontainerd etc.
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Serverless Computing - unikernels

e Nhow about we try something more elegant as the basis for
serverless execution: unikernels!

® Uunikernels offer:

o fast boot (inherently, serverless functions have no state)

o low mem/mgt footprint

o increased security (sandbox with hardware extensions + minimal attack

surface)

e pbutunikernels lack:

o function/code compatibility (interoperability)
o runtime support (orchestration/process spawning)




Serverless Computing - unikernels

e Serverless frameworks are designed for containers:
o based on container runtimes/operators
e Unikernels are not containers:

o their management interface (+ I/O) resembles the one of VMs

o the application is bundled in a single bootable binary

o there is limited orchestration support




Serverless Computing - unikernels

unikernels for Serverless:

e container image & runtime flows:
o bundle the unikernel binary & dependencies in a container image

o tweak a container runtime to spawn a unikernel along with its
monitor/sandbox

® |nvocation triggers

o endpoint setup

o interface with the serverless gateway




Serverless Computing - unikernels

e integrate unikernels in modern orchestrators:

o build a compatible runtime able to spawn a unikernel (WiP)

e Uusing the above runtime on a Serverless Framework is
straightforward:

o instead of spawning a container on function invocation, the system will
spawn a unikernel -> no change needed on the serverless workflow.




Serverless Computing - OpenFaa$S & unikernels
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Serverless Computing - unikernels

® as a first step, we take a hybrid approach where:

o we keep the container for the interface & the endpoint setup and

o spawn the unikernel for the actual code execution

e we use Openkaa$S as the serverless framework, on a generic k8s C_J
cluster:

O faas-netes & gateway (control plane)

O function pods -> generic containers with fwatchdog to exec user function

e we use solob as the unikernel example




Deploy an echo function with solob & OpenFaaS
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https://github.com/nubificus/solo5-faas

Serverless Computing - containers
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Serverless Computing - ML/A

e \Wworkloads that need device access in serverless execution are ML/AI
applications

o Edge instant decision making based on sensor data

o Image processing, information extraction based on specific models

e how do we combine unikernel execution with hardware device access ?



Unikernels for ML/AI

Unikernels are not a good fit for ML/AIl workloads (at least not yet.))

e ML frameworks come in contrast with Unikernel architecture

o ML frameworks dynamically link dependent libraries
o ML frameworks have a lot of dependencies
o Porting such a framework on a unikernel requires huge engineering effort

e No support for accelerated devices

o hardware passthrough requires porting device drivers — not a good idea
o the generic paravirtualization solution is almost non-existent




Proposed solution: vAccel
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vAccel on Unikernels
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vAccel: Current state

Unikernel frameworks
e Unikraft
e Rumprun

Programming interface
o C(C/C++ API

o Rust & Python

Framework integration
e [nitial integration with TensorkFlow
e Supportfor BLAS operations
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Image classification with Unlkraft & OpenFaa$S
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Summary

® Serverless execution based on unikernels

o reduce cold boot times

o reduce attack surface

e e use VAccel to expose hardware acceleration semantics to unikernels

o function-based hardware acceleration

o multi-framework support

e next step: develop a pure unikernel runtime for upper-layer orchestrators
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Source Code & Demo info:

o vAccel: https://vaccel.org & https://docs.vaccel.org

vAccelRT: https://aithub.com/cloudkernels/vaccelrt

vAccel unikraft: https://aithub.com/nubificus/unikraft-vaccel
openfaas-solob: https://aithub.com/nubificus/solo5-faas
openfaas-vaccel: https://aithub.com/nubificus/unikraft-vaccel-faas

Thanks!
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