Hardware accelerated
applications on unikernels
for Serverless Computing Q

nublﬁcus

Anastassios Nanos, Charalampos Mainas

¢ https://github.com/nubificus
¥ @nubificus

N https://blog.cloudkernels.net
https://nubificus.co.uk

& info@nubificus.co.uk

501 West One Peak, 15 Cavendish street,
S3 7SR Sheffield, UK
Registered in England and Wales, #11545167

Overview

e Serverless computing
e Unikernels as the basis for lightweight function execution

e Current state & missing pieces

o "echo" demo on OpenFaa$S with solob

e ML workloads, hardware acceleration & unikernels

o image classification demo on OpenFaa$S with unikraft & vAccel

Serverless Computing

e Managed infrastructure orchestration by the service provider
e [ffortless scaling (scale-out)
e [ocus on Business logic

e Deploy code without provisioning the infrastructure

ﬁ N nubificus

Serverless Computing

e (Code deployed as a function with its dependencies
e Event-driven execution
e Dilling model: actual resource usage vs idle

e Stateless execution oriented to:

O microservices

o triggered actions

ﬁ N nubificus

Serverless Computing

e mostly deployed on Cloud infrastructure

e mode of execution seems useful for Edge workloads as well

o e.g. ML inference for fast decision making

e currently backed by containers

ﬁ N nubificus

Serverless Computing - common workflow

e control plane:
o API gateway/scheduler/queue worker

e functions:
o main init function / endpoint (provider)
m setup environment (interface/endpoint init)
m setup handler (to trigger user code)
o handler function (user)
m spawned on invocation (via endpoint trigger)
m actual code execution

e pbundled in container images:

m spawned (sandboxed or plain)
m listen to events via the endpoint/gateway

Serverless Computing - OpenFaa$S in k8s

O 3 enFaaS cont ml Pl 744 e @
T containers o

giﬁl?

7 Con‘to\}y\ers i

Serverless Computing - containers

e currently backed by containers: multi-tenancy issues
(security/data leaks)

e current solution: sandbox containers using VMs (hardware
extensions to isolate workloads).

e But VMs:
o exhibit non-negligible overhead (mem/mgt footprint)

o do not facilitate hardware access / device sharing

ﬁ N nubificus

Serverless Computing - containers

e But VMs:

o exhibit non-negligible overhead (mem/mgt footprint)

o do not facilitate hardware access / device sharing

Serverless Computing - sandboxed containers

e overhead associated with VM sandboxing:

o boot time (cold boot) vs warm boot / invocation (checkpointing)
o memory footprint (Edge devices)

o VM lifecycle / state (VMM, dependencies)

e complicated stack:

m VMM, kernel/ramdisk/rootfs/libcontainerd etc.

ﬁ N nubificus

Serverless Computing - unikernels

e Nhow about we try something more elegant as the basis for
serverless execution: unikernels!

® Uunikernels offer:

o fast boot (inherently, serverless functions have no state)

o low mem/mgt footprint

o increased security (sandbox with hardware extensions + minimal attack

surface)

e pbutunikernels lack:

o function/code compatibility (interoperability)
o runtime support (orchestration/process spawning)

Serverless Computing - unikernels

e Serverless frameworks are designed for containers:
o based on container runtimes/operators
e Unikernels are not containers:

o their management interface (+ I/O) resembles the one of VMs

o the application is bundled in a single bootable binary

o there is limited orchestration support

Serverless Computing - unikernels

unikernels for Serverless:

e container image & runtime flows:
o bundle the unikernel binary & dependencies in a container image

o tweak a container runtime to spawn a unikernel along with its
monitor/sandbox

® |nvocation triggers

o endpoint setup

o interface with the serverless gateway

Serverless Computing - unikernels

e integrate unikernels in modern orchestrators:

o build a compatible runtime able to spawn a unikernel (WiP)

e Uusing the above runtime on a Serverless Framework is
straightforward:

o instead of spawning a container on function invocation, the system will
spawn a unikernel -> no change needed on the serverless workflow.

Serverless Computing - OpenFaa$S & unikernels

- —

o

unkemnel cuntime |

.

S,

Runtime class

R}

{ |__.=4) ‘ application application
| |

i
‘ libos l lbos
o 1 kbos I
| b unikenel unikernel
unikemel 7 7
Punction\ spawn 7 7
! F Sandbox S“V\DQLOX
sandbox

Userfunctions'

I | OpenFaas | N
| 1‘;5;\ container | [| peraas
o () contniner

Au""'--.i,‘_.PPC“FO‘O‘S control PIO\V\C
" _containers

Suateidog

Funtendog Futerdoy

User-functions'

Serverless Computing - unikernels

® as a first step, we take a hybrid approach where:

o we keep the container for the interface & the endpoint setup and

o spawn the unikernel for the actual code execution

e we use Openkaa$S as the serverless framework, on a generic k8s C_J
cluster:

O faas-netes & gateway (control plane)

O function pods -> generic containers with fwatchdog to exec user function

e we use solob as the unikernel example

Deploy an echo function with solob & OpenFaaS

Runtime class

|) Fwa’tckolog / solo5
solo5 { 4 7 bindlings |
Binolinji (‘ ‘ solos—kvtr |
sl ;1 ‘L . Fvoutchdog

... Yo
g 2
d \
| User-functions'
‘
| | Lz unkernels
‘ 3 OP tFwA ‘“‘;ﬂ?‘ OperFaas ‘ ..
amner | J ’ta ner

OpenFaaS con‘trol plome_
- For more info: https: github.com/nubificus/solob-faas

Q N nubificus

https://github.com/nubificus/solo5-faas

Serverless Computing - containers

e But VMs:

o exhibit non-negligible overhead (mem/mgt footprint) -> unikernels!

o do not facilitate hardware access / device sharing

Serverless Computing - containers

e But VMs:

o exhibit non-negligible overhead (mem/mgt footprint) -> unikernels!

o do not facilitate hardware access / device sharing

Serverless Computing - ML/A

e \Wworkloads that need device access in serverless execution are ML/AI
applications

o Edge instant decision making based on sensor data

o Image processing, information extraction based on specific models

e how do we combine unikernel execution with hardware device access ?

Unikernels for ML/AI

Unikernels are not a good fit for ML/AIl workloads (at least not yet.))

e ML frameworks come in contrast with Unikernel architecture

o ML frameworks dynamically link dependent libraries
o ML frameworks have a lot of dependencies
o Porting such a framework on a unikernel requires huge engineering effort

e No support for accelerated devices

o hardware passthrough requires porting device drivers — not a good idea
o the generic paravirtualization solution is almost non-existent

Proposed solution: vAccel

Components:
e user-facing API (accelerate-able functions) : S S . -
e VvAccelRT (dispatch) | Machine Leaming | BLAS | Crypto
e plugins (hardware, acceleration frameworks & transport) e Tt i e S e T R
vAccel RT
Features:
° Hardvvare.—agnostm AP! | . ———— s
o Generic API at function granularity ! ' ‘ 5 : i A
o Hardware-specific logic in vAccel, not in unikernel G J A j 7 | red i :
e Portability /) I P DY 4 s imf i o B0 /000 ik
o binary compatibility for functions
o integration with high-level frameworks (Tensorflow, PyTorch, etc)
o multiple execution environments (host/container, VMs, unikernels)
e Security: > A
o User code does not access directly the (shared) accelerator ~o—=\ a mel
o Support for execution in virtualized guests o6 W

vAccel on Unikernels

Unike,mel
L e i Unikernel
: Bl As l _ _
! : e One Transport (VirtlO) plugin
i X CTELTEL & : .
: E | e Offload acceleration requests to host
E f{ff??dlffi_{j?f__} ________ i ,fTTf?Tii_?f_J _______ RS
: vAccel RT VAccel RT

////w{ 5 ‘ '1' Host
'/// | [§
‘/Vi”/%/pz ! ‘ | Tt e VAccelRT linked with VMM or

standalone handler (virtio-pci or
vsock)
e Receives acceleration requests
e Hardware execution

ﬁ N nubificus

vAccel: Current state

Unikernel frameworks
e Unikraft
e Rumprun

Programming interface
o C(C/C++ API

o Rust & Python

Framework integration
e [nitial integration with TensorkFlow
e Supportfor BLAS operations

ﬁ N nubificus

Image classification with Unlkraft & OpenFaa$S

— User‘-\ounc‘t.ons
Runtime class o u n'kemels

L | |]_d
Ope_nFaaS cov\'trolplome, |

q | :
containers ¥ e \
:5_;; OpenFaas o Y OperFon:]
REE Nl vAccel RT
e SN e, e e
! |
i Jetson { Bu4s
! inPerene PyTorch | /e Tensorfl FPéA
hzid A

Summary

® Serverless execution based on unikernels

o reduce cold boot times

o reduce attack surface

e e use VAccel to expose hardware acceleration semantics to unikernels

o function-based hardware acceleration

o multi-framework support

e next step: develop a pure unikernel runtime for upper-layer orchestrators

Q N nubificus

SERRANO@ ®5GComplete

This work is partly funded as part of the European Union’s Horizon 2020
research and innovation programme under Grant Agreements no 871900
(bG-COMPLETE) & 101017168 (SERRANO)

Q N nubificus

Source Code & Demo info:

o vAccel: https://vaccel.org & https://docs.vaccel.org

vAccelRT: https://aithub.com/cloudkernels/vaccelrt

vAccel unikraft: https://aithub.com/nubificus/unikraft-vaccel
openfaas-solob: https://aithub.com/nubificus/solo5-faas
openfaas-vaccel: https://aithub.com/nubificus/unikraft-vaccel-faas

Thanks!

o O O O

() https://github.com/nubiﬁcus 501 West One Peak, 15 Cavendish street,
¥ @nubificus S3 7SR Sheffield, UK

https://blog.cloudkernels.net Registered in England and Wales, #11545167
Y https://nubificus.co.uk

info@nubificus.co.uk

https://vaccel.org
https://docs.vaccel.org
https://github.com/cloudkernels/vaccelrt
https://github.com/nubificus/unikraft-vaccel
https://github.com/nubificus/solo5-faas
https://github.com/nubificus/unikraft-vaccel-faas

