Advanced PCB simulation with KiCad

Introduction to IBIS and FEM-based simulations

Fabien CORONA

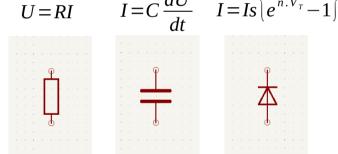
FOSDEM 2022

05/02/2022

SUMMARY

- Present state of simulation in KiCad
- FEM simulations
- Power integrity
- Signal integrity
- IBIS

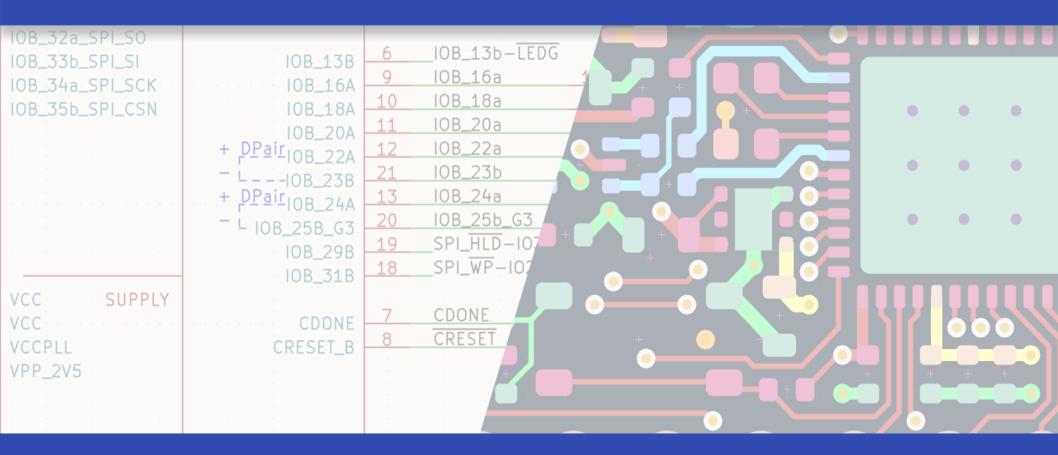
Present state of simulation in KiCad



SPICE = "Simulation Program with Integrated Circuit Emphasis"

KiCad provides a graphical interface to a spice engine: ngspice.

A simulation provides a way to design and to validate a project.



- Time response analysis
- Frequency response analysis
- DC analysis
- Much more...

But we cannot model everything...

FEM: Finite Element Method

What is FEM?

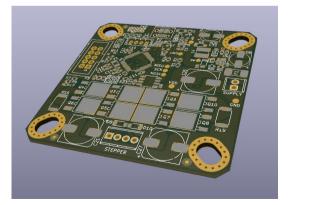
Maxwell's equations

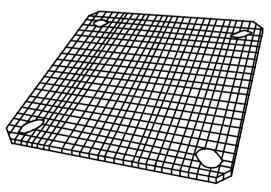
 $\nabla \cdot E = \frac{\rho}{\epsilon_0}$

 $\nabla \cdot B = 0$

 $\nabla \times E = \frac{-\partial B}{\partial t}$ $\nabla \times B = \mu_0 (J + \epsilon_0 \frac{\partial E}{\partial t})$

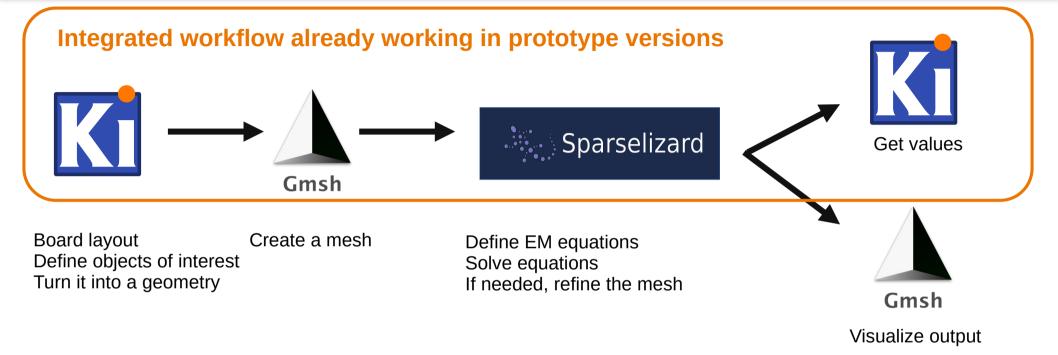
Electric charges contribute to the electric field

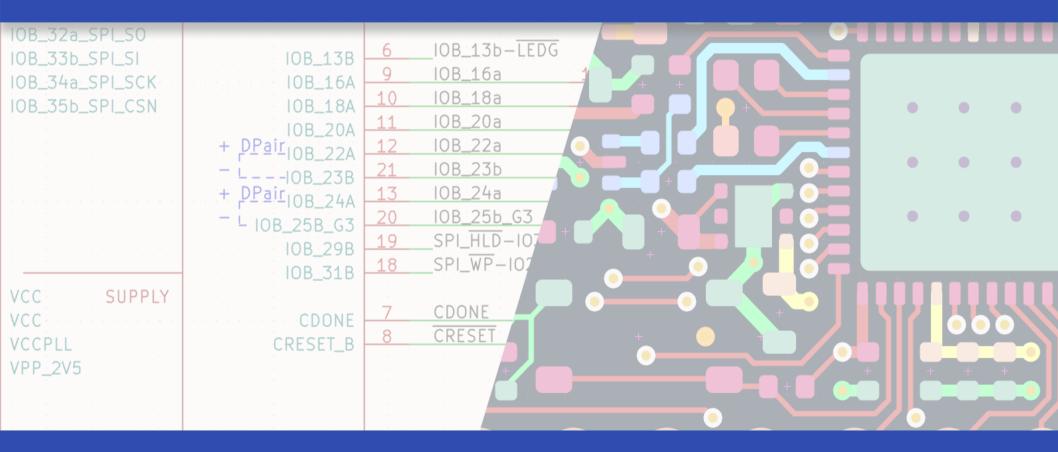

There is no magnetic monopole

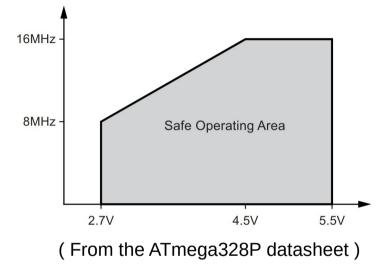

A changing magnetic field creates an electric force

Electric currents create magnetic fields,

a changing electric field behaves like a current


FEM: Slice the board into small domains, then solve Maxwell's equations on each domain


FEM: workflow



Power integrity

In the gray area, the device should work as expected Outside, it may or may not work We may face:

- A power off
- Resets
- Glitches
- \rightarrow We have to stay in the safe operating area

A good power integrity also helps with EMI (Electromagnetic interference)

Electrical Characteristics (@T_A = +25°C, unless otherwise specified.)

Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition
Output Voltage (Note 12)	Vout	4.75	5.0	5.25	V	$V_{IN} = 12V, I_{OUT} = 15mA$
		_	33	220		$V_{IN} = 10V$ to 15V, $I_{OUT} = 15mA$
Line Regulation (Notes 12 & 13)	ΔVουτ	_	400	700	mV	$V_{IN} = 7V$ to 60V, $I_{OUT} = 15$ mA
		_	145	400		V _{IN} = 10V to 60V, I _{OUT} = 15mA
Temperature Coefficient	ΔVουτ/ΔΤ		3.52		mV/°C	T _J = -40°C to +150°C
			0.02			$V_{IN} = 12V, I_{OUT} = 15mA$
Load Regulation (Notes 12 & 14)	ΔVουτ	_	-20	-130	mV	$I_{OUT} = 10$ mA to 20mA, $V_{IN} = 12V$
			-166	-300		$I_{OUT} = 0.1$ mA to 50mA, $V_{IN} = 12V$

Voltage regulators are not perfect:

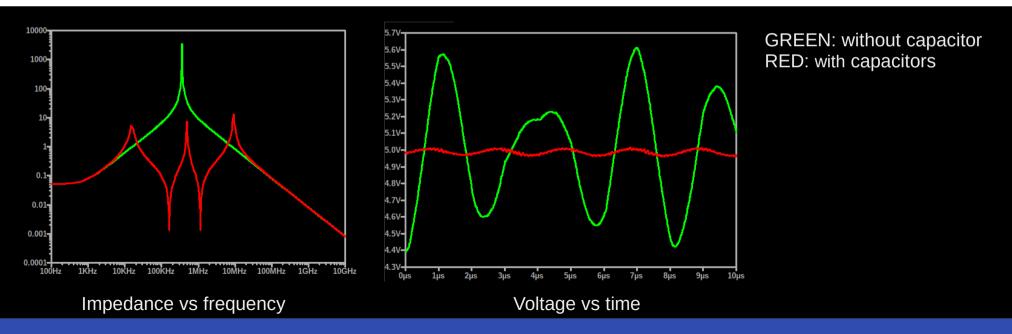
- DC voltage can be different from the nominal voltage
- The load regulation is not perfect

5V R L 4.85V SUPPLY DEVICE

The power delivery network (PDN) is not perfect:

- The copper resistivity leads to a DC voltage drop
- Its inductance leads to a frequency-dependent voltage drop

Power integrity: Mitigation

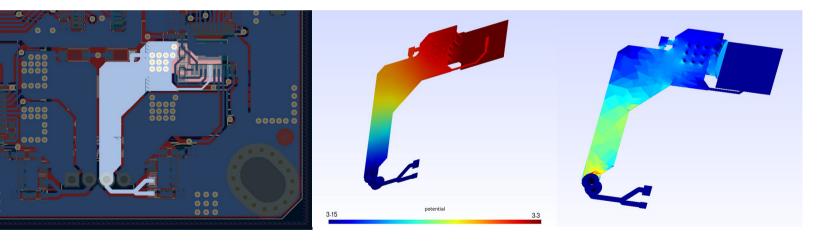


The voltage drop is $U(f) = Z(f) \cdot I(f)$

We want the voltage drop to be lower than a target voltage, Uo. U(f) < Uo(f)Which is equivalent the impedance being lower than a target impedance, Zo. Z(f) < Zo(f)The target impedance

The target impedance depends on the application

We add capacitors to lower the impedance. At high frequencies, we rely on the capacitance provided by the PCB itself



FEM: Application example – Voltage drop (3D)

Related applications:

- Visualization of potential / current distribution
- Via stress analysis
- Resistance of complex geometries (copper zones)
- AC variant \rightarrow Power delivery network impedance

PCB editor

Electric potential

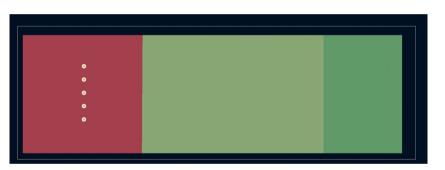
Current density

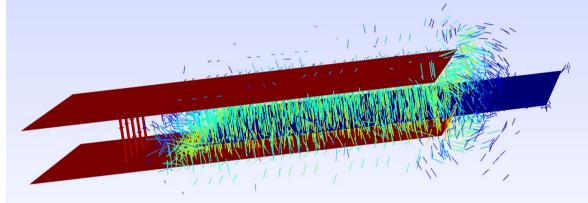
FEM: Application example – Voltage drop - Setup

The user chooses a net. The user defines voltage sources and current sinks. There can be multiple sources, and multiple sinks.

Simulations	Electrical					
DC Power Analysis Plane Capacitance	Select a net +3V3					
	NOTE : Unit is V for sources, A for sinks					
		Component	Pad	Туре	Value	Unit
	6	L1	1	passive		-
	7	P1	1	passive		-
	8	R3	2	passive		-
	9	U4	17	source	3.3	v
	10	U4	36	sink	1.5	A
	11	U4	44	sink	0.3	A
	12	U2	5	sink	0.15	A
	13	₩5	1	passive		
	14	R23	2	passive		-
	15	R24	2	passive		-
	16	U9	8	passive		-
	17	C37	2	passive		->
	1			I .		1 1

(This GUI is for development purposes)


Outputs				
🛃 Gener	ate 3D map : j	potential dro	р	
Conor	ate 3D map : o	urrent dens	ity	
Gener	ate 3D map : j	power densit	y density	
🗹 Gener				
IOTE: you	ı can use gmsh	n to open 3D	maps	
elect a fo	lder for outpu	its: (N		•
	A	В	c	D
8	 R3	2	3.32287	v
9	U4	17	1.95	A
10	U4	36	3.32478	V
11	U4	44	3.32287	v
12	U2	5	3.33002	v
13	W5	1	3.32942	V
14	R23	2	3.3	v
15	R24	2	3.32866	v
16	U9	8	3.3	v
17	C37	2	3.3	v
18	P4	4	3.32287	v
19	C4	2	3.3	V
20	C6	2	3.32281	V
21	R12	1	3.32801	V
22	R13	1	3.32834	V
23	U1	11	3.3	V
24	U1	12	3.3	V
25	U3	8	3.32281	V T

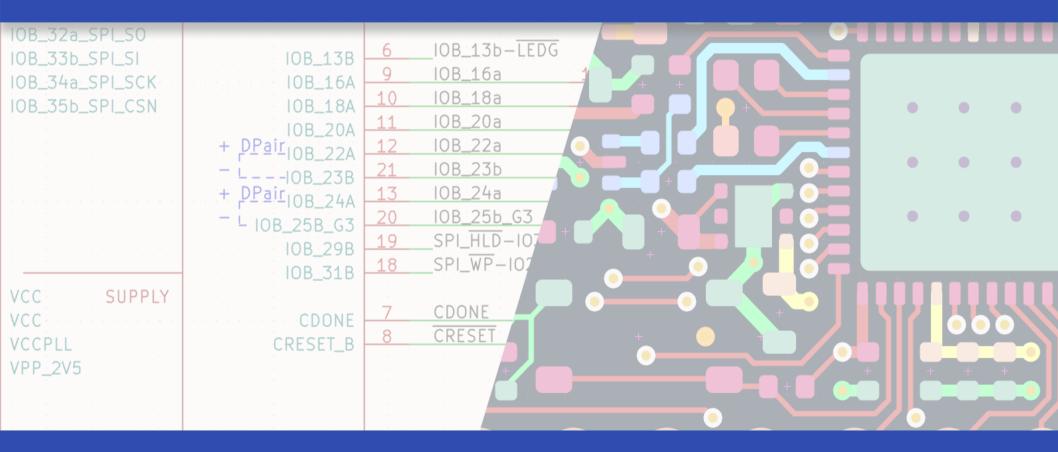

FEM: Application example – Capacitance

Related applications:

- Power integrity (plane capacitance)
- Some RF applications?

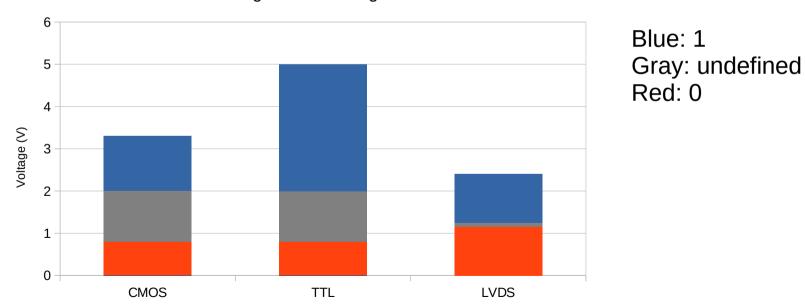
FEM: Application example – Capacitance - Setup

 Board Stackup Board Editor Layers 	Copper layers: 4	•	Impedance	controlled			Add Dielectric Layer		vielectric Layer
Physical Stackup Board Finish	Laye Id	Турғ	Materia		Thickne	Ĥ	Colo	Epsilon	Loss
Solder Mask/Paste	F.Silkscreen	Top Silk Screen	Not specified				Not specified 🔻		
 Text & Graphics 	F.Paste	Top Solder Paste							
Defaults Fomatting	F.Mask	Top Solder Mask	Not specified		0.01 mm		Not specified 🔻	3.3	0
Text Variables	F.Cu	Copper			0.035 mm				
 Design Rules Constraints 	Dielectric 1	Core 👻	FR4		2.51 mm		Not specified 🔻		0.02
Pre-defined Sizes	In1.Cu	Copper			0.035 mm				
Net Classes Custom Rules	Dielectric 2	PrePreg 👻	FR4		2.51 mm		Not specified 🔻		0.02
Violation Severity	In2.Cu	Copper			0.035 mm				
	Dielectric 3	Core 👻	FR4		2.51 mm		Not specified 🔻		0.02
	B.Cu	Copper			0.035 mm				
	Board thickness fror	n stackup: 7.69 mm	Adjust D	vielectric ⁻	Thickness			Exp	oort to Clipboard
Import Settings from Anot	her Board							© Cance	і 🗸 ок

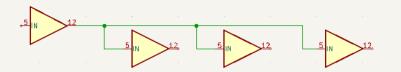

(This GUI is for development purposes)

Electrical				
Select a net	A -			
Select a net	в			
Outputs				
🛃 Generate	3D map : charg	ge density		
🛃 Generate	3D map : Elect	ric field		
NOTE: you can	use gmsh to c	open 3D maps		
Select a folder	for outputs:	(None)	-	
Results				
Simulated cap	acitance is 0.44	46199nF		

Run



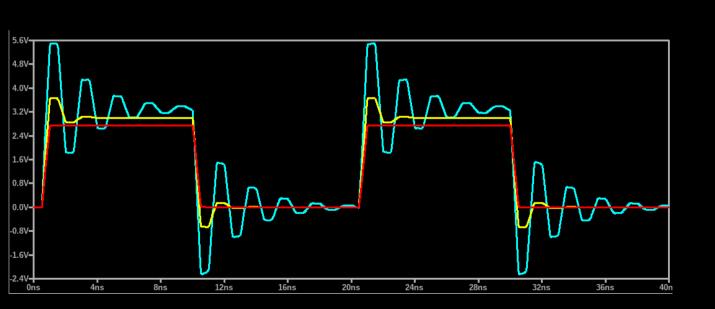
Signal integrity


1s and 0s are digital information, and can only take two values. We use analog signals to transmit bits which can take any value. Between 1 and 0, there is always an undefined value.

Threshold voltages for some logic families

Signal integrity: what can go wrong

Exceeding the safe voltage range of the component can deteriorate the component. Crossing multiple times can lead to multiple captures.

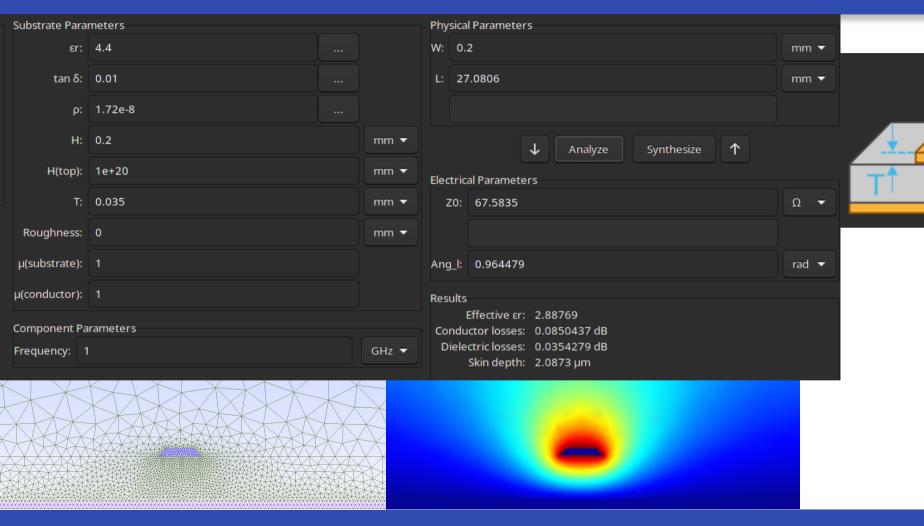


Any track has a characteristic impedance defined by its capacitance and its inductance.

Maintaining a constant impedance is a key for signal integrity.

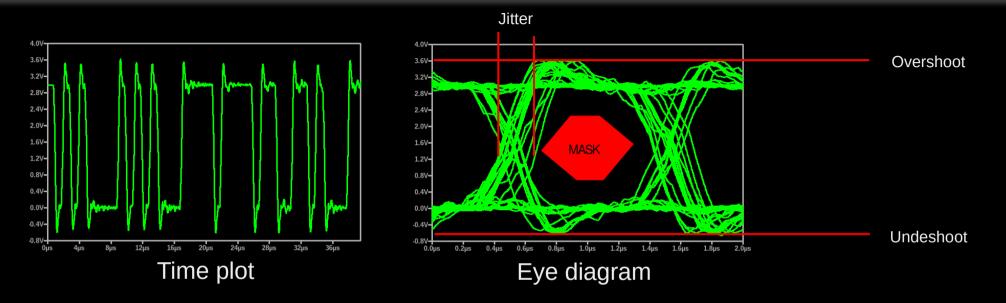
The receiver should match the track impedance.

This is not a high-frequency problem, but a low rise time problem.



Blue: 0 % matching Yellow: 66 % matching Red: 100 % matching

FEM: Application example – Track impedance - Setup

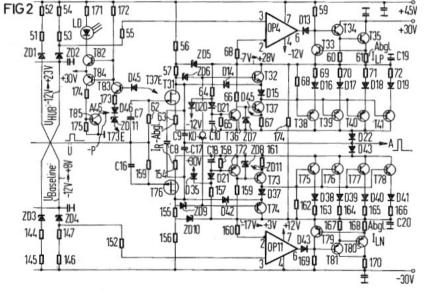


W

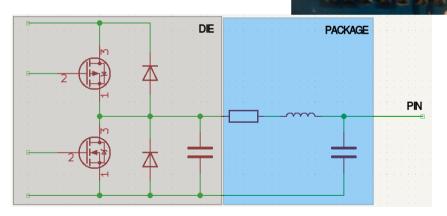
Signal Integrity: Eye diagram

The eye diagram is a compliance test Using a random sequence, we can measure the ISI (inter symbol interference) The signal should not enter the mask

IBIS: I/O Buffer Information Specification



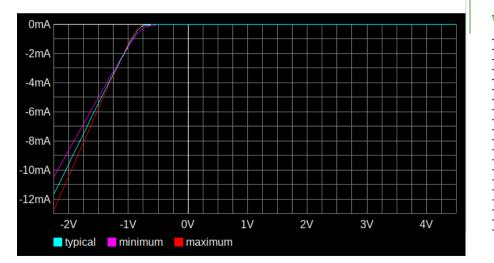
- IBIS (IO Buffer Information Specification) is a open file format (ibis.org)
- It is not a model, but an electrical description of a component
- Manufacturers are reluctant to provide SPICE models
- We can infer a working SPICE model from it
- There is a lot of information that can be extracted:
 - Push / pull transistor characteristics
 - Imbalance in transistors / differential pairs
 - Die capacitance
 - Pin capacitance, inductance and resistance
 - Much more



An output / input stage can be complex with a lot of components A model derived from an IBIS description is a lot faster than a full SPICE model

A push-pull output, patent US4329728A, expired

Model that can be used for all IBIS descriptions



Package parasitic values

(can be defined for individual pins)

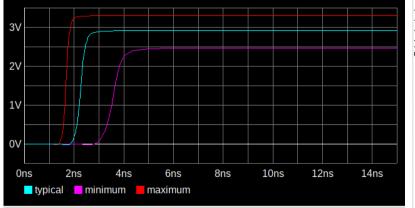
[Package]	20 TSSO	P - PW package	
 R_pkg L_pkg C_pkg 	typ 0.05 1.0nH 0.2pF	min 0.04 0.8nH 0.16pF	max 0.06 1.2nH 0.24pF

Diodes: Current VS voltage tables (IV tables)



[GND Clamp] I(typ) I(min) Voltage I(max) -2.25 -0.0127448-0.0117097-0.0104769-1.41975 -0.0047652 -0.00441769-0.00501465-0.00470981 -1.413-0.0043696-0.00495297 -1.36575 -0.00432299 -0.00452237 -0.00403394-1.359 -0.00426788 -0.00446105-0.00398614-1.3455 -0.00415777 -0.00389066 -0.00433856 -1.33875 -0.00410277-0.00384298-0.00427739-1.1565 -0.00263819 -0.00257621 -0.00265617-1.116-0.00232029 -0.00230204 -0.00230743 -1.10925 -0.00226769 -0.0022567 -0.00224985 -0.9675-0.00120242-0.00133869-0.00108784-0.96075 -0.00115444-0.0012972-0.00103574-0.954 -0.94725 -0.00110684-0.001256-0.000984111-0.00105963 -0.00121509-0.000932982 -0.9405-0.00101284-0.00117448-0.000882401-0.93375 -0.000966507 -0.00113421-0.000832418-0.927 -0.000920657 -0.00109428-0.000783091 -0.8595 -0.000498419-0.000718766 -0.000345923-0.85275 -0.000461118-0.000684198-0.000310834-0 846 -0 000425021 -0.000650307-0 000278063

26



Transistor: Current VS voltage tables (IV tables)

Voltage I(typ) I(min) I(ma	x)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	612904 829743 07052 58986 61797 03398 19614 93573 95344 97034 06617 88613

Waveforms (VT tables)

[Rising Waveform]
V_fixture = 0V
V_fixture_min = OV
V_fixture_max = OV
R_fixture = 3000hm
C_fixture = OF

. .

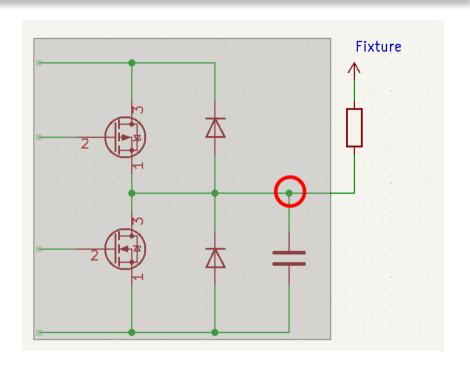
Time	V(typ)	V(min)	V(max)
0 1.04121e-09 1.30809e-09 1.31583e-09 1.34039e-09 1.3773e-09 1.43632e-09 1.44917e-09 1.46359e-09 1.50117e-09 1.53949e-09 1.55188e-09	$\begin{array}{c} 6.73865 = -06\\ 0.000830126\\ 0.00104118\\ 0.0010473\\ 0.00106672\\ -0.000967699\\ -0.00415911\\ -0.00485906\\ -0.00564476\\ -0.00564476\\ -0.0076919\\ -0.00977912\\ -0.010454 \end{array}$	$\begin{array}{c} 1.02646 = -05\\ 0.00052498\\ 0.000656913\\ 0.000660741\\ 0.000691341\\ 0.000720303\\ 0.000726555\\ 0.000726655\\ 0.000733785\\ 0.000752363\\ 0.000771305\\ 0.000771305\\ 0.000777429 \end{array}$	$\begin{array}{c} 3.59424 \\ \hline 0.00119797 \\ \hline -0.0183515 \\ \hline -0.0176304 \\ \hline -0.00852587 \\ 0.00532204 \\ 0.070565 \\ 0.0918659 \\ 0.119353 \\ 0.212438 \\ 0.350849 \\ 0.408408 \end{array}$
4 5/0 00	0 0110055	0 000703434	0 4/1/00

IBIS: How to build a model

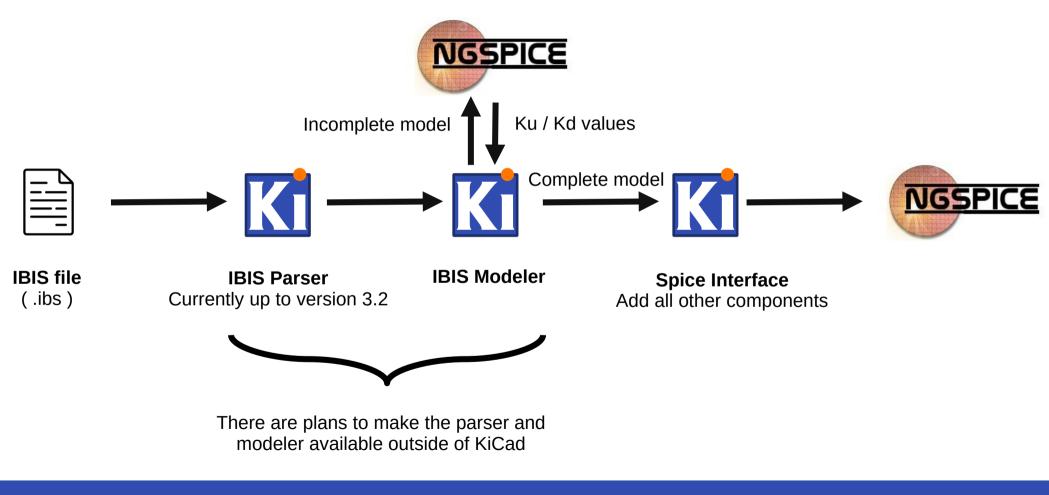
We don't have transient information for the transistors

Falling / rising waveforms are given for a specific load with a fixture voltage (usually VCC or GND)

We apply time dependent Ku/Kd modifiers to the transistor IV tables. (1: current flowing, 0: no current flow) => Two unknowns

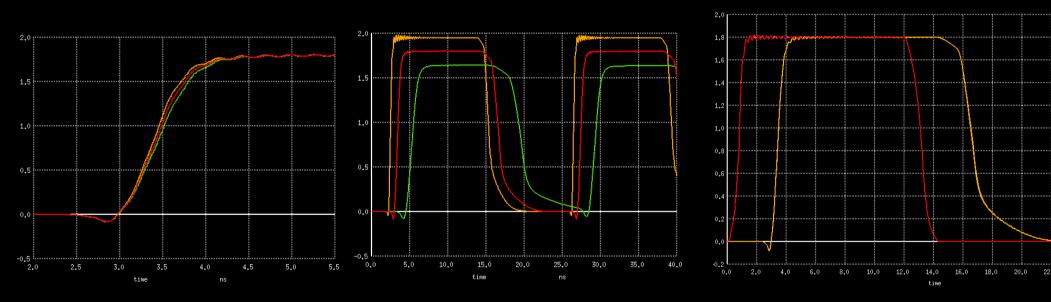

At the point in red, the sum of currents is equal to zero. => One equation

We can have two rising /falling waveforms with two different fixtures.


=> One equation

With 2 unknown and 2 equations, we can easily solve for Ku / Kd With 2 unknown and 1 equations, we have to assume simultaneous switching (Kd = 1 - Ku)

We need to build a spice model for each bitstream we want to use



IBIS: Simulation examples (SN74HCS244)

Package parasitics Can vary from a chip to another

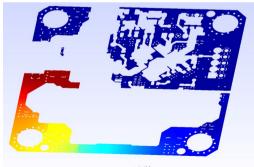
Supply voltage Typical, minimum and maximum behaviors are defined Modeling accuracy (Red: 0 waveform pairs) (Yellow: 2 waveform pairs)

Conclusion

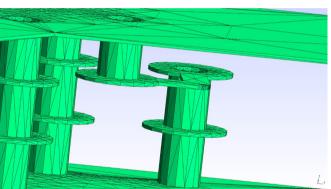
- New ways to model things
 - IBIS support
 - New transmission lines topologies in PCB calculator (eg: differential stripline)
- New simulations accounting for the actual layout:
 - Via stress analysis
 - Power integrity analysis
 - Signal integrity analysis
 - Crosstalk analysis
- New features:
 - Auto-track width to maintain a constant characteristic impedance
 - New DRC rules based on PI / SI
 - Add measurements of track delay, capacitance, resistance, etc..

But it's a long road...

Conclusion



Conclusion:


- KiCad would benefit from advanced simulation capabilities
- Power and signal integrity simulations need PCB simulations
- FEM provides a way to extract information to get a SPICE model
- IBIS provides a way to get accurate and fast SPICE models

Special thanks to:

- Thomas Pointhuber (KiCad)
- Alexandre Halbach (Sparselizard)
- Holger Vogt (ngspice)
- The KiCad team

potential 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Thank you for attention

