: UBISOFT IT
. ITENGINEERING & PLATFORM

~ADOPTING
~ 'OPENTELEMETRY

O

© o000 0 0 0 0

2222222222

~ ABOUT ME

e

Vincent Behar
Senior Engineer

Twitter
https://twitter.com/vbehar

J ©

Ubisoft

French video game company

GitHub
https://qithub.com/vbehar

https://twitter.com/vbehar
https://github.com/vbehar

AGENDA

OpenTelemetry

Our context and goals
Implementation
Adoption

Benefits

OPENTELEMETRY

High-quality, ubiquitous, and portable telemetry to enable effective observability

Open source Contributors
« 2019 * Amazon, Google, Microsoft,
* OpenTracing RedHat, ...
 OpenCensus * Splunk, Datadog, Grafana,
 CNCF - #2 project Dynatrace, New Relic,
Elastic, ...

OPENTELEMETRY

What's in it?

Specifications

* Traces: stable

* Metrics: stable

* Logs: experimental

* Semantic Conventions
* Propagation

* Protocol (OTLP)

Implementations

« APIs
« SDKs
 Libraries

instrumentation
* 11languages

Collector

Interoperability
Written in Go
OpenCensus Service
OTel's killer feature

OPENTELEMETRY COLLECTOR

Vendor-agnostic way to receive, process and export telemetry data

Com ponents .ﬁ‘g_: Otel Collector
b 5 O+ receive rS S Extensions: health, pprof, zpages & o
pote L pgote

* 40+ exporters o B g e

« 20+ processors Batch . ArtiButes 3

° + i N ~
10+ extensions & £ oo &

* Custom components eger segE

* Distributions

4
g
'E == Batch = Sa === Filter ==
[
3

Prometheus é Prometheus
@ Processors

OUR CONTEXT

Why we reconsidered our monitoring strategy?

Silos

Total isolation
between logs and
metrics
Heterogenous agents
setup between
services

Internal requirements

Push logs to an
Elasticsearch-based
platform

Push metrics to a
VictoriaMetrics-based
platform

Timing

GA approching...
Integrating more
services

OUR GOALS

Unified Platform

Unified Visualization Platform

* Quickly surface relevant data

* With correlation between logs,
metrics and traces

« Jump from graphs (metrics) to traces
- with exemplars - to logs, ...

Unified collection and processing
platform

Common set of metadata and naming
convention
Simplify operations

OUR GOALS

Platform Features

Standards and conventions

* Interoperability between our
applications

* Interoperability with 3rd party
components

* Improve troubleshooting and
understanding of our system

Extensible

Custom use-cases
Logs. metrics and traces today,
continuous profiling tomorrow?

OUR GOALS

Integration in Ubisoft Ecosystem

Compliance with internal requirements

* Push ourlogs to aninternal
Elasticsearch-based service

+ Set pre-defined labels on specific
logs for security audit

* Push our metrics to an internal
VictoriaMetrics-based service

Alignment with other teams

Lots of teams / services at Ubisoft
Align on the technology stack
Share knowledge, experience

10

WHY OPENTELEMETRY

And what are we using?

Semantic conventions API/SDK for tracing Collector
« Spans attributes « Stable API/SDK « Single agent
* Application’s logs available in multiple * Interoperability
* Collector pipelines languages * Routing
e Auto-instrumentation * Custom processors
* Adoption by libraries * Custom distribution
« OTLP * Not just an agent, but
an extensible
platform

IMPLEMENTATION

Deployment Strategy

* Kubernetes

* DaemonSet

* Per-node collection of
logs and metrics

* Spansingestion through a
Service

Kubernetes Node

Push

traces

A 4

OtelCol Service

Push

Pod B
[y
Pod A Scrape
B Imetrics
Receive traces
Read OtelCol Pod <
Kubernetes Node
Pod B
[y
Pod A
Scrape
Imetrics
Read OtelCol Pod <
Receive traces

traces

12

IMPLEMENTATION

Logs

Input / Output

Elasticsearch

A 4

A4

Loki

Open & Read

&

Log files
Traces

OpenTelemetry

Collector

h 4

Scrape metrics

Tempo

A

Pod
App Receive spans

v

Metrics

VictoriaMetrics

\ 4

A 4

Prometheus

IMPLEMENTATION

Logs Pipeline
Logs Pipeline
Move semantic fields from body to attributes y Loki
Set Kubernetes Resource Attributes
filelog receiver Set Cloud Resource Attributes
Loa il < Elasticsearch
og files - - exporter
Set Custom Attributes Elasticsearch
Fix 3rd party logs

IMPLEMENTATION

Metrics Pipeline

Metrics Pipeline
Prometheus
Remote Write VictoriaMetric
Pod Set Kubernetes Resource Attributes Exporter ‘I%rnante1 8
Prometheus] Prometheus
iy Set Cloud Resource Attributes negxot:n Write
_ porter . i
/metrics [€¢——— — VictoriaMetrics
Tenant 2
Routing (per-namespace) Promsihess
Remote Write
Exporter
Prometheus

IMPLEMENTATION

Traces Pipeline

App Pod

otel SDK |

Traces Pipeline

OTLP receiver

3rd Party Pod

\

Zipkin lib ||

/

Set Kubernetes Resource Attributes

Set Custom Resource Attributes

Generate Metrics from Spans

Zipkin receiver

\

Tempo exporter
» Tempo
Prometheus
Remote Write
Exporter
Prometheus

16

IMPLEMENTATION

- (p *logProcessor) ProcessLogs(ctx context.Context, logs pdata.Logs) (pdata.Logs, error) {
rLogs := logs.ResourcelLogs()
for i := @; i < rLogs.Len(); i++ {
rLog := rLogs.At(i)
ills := rLog.InstrumentationLibraryLogs()
for j := 0; j < ills.Len(); j++ {
ls := ills.At(j).Logs()
for k := @; k < 1s.Len(); k++ {
record := 1s.At(k)

record.Body/()
record.Attributes()
rLog.Resource().Attributes()

return logs, nil

IMPLEMENTATION

* Per component instance
metrics

Logs Exported vs failed /Second

11:00 13:00 14:00 15:00 16:00

elasticsearch/logstack exported /sec == |oki exported /sec == elasticsearch/logstack failed / sec
loki failed / sec

Queues Size

11:00 12:00 13:00 14:00 1

== elasticsearch/logstack == loki == otlp/tempo == prometheusremotewrite
prometheusremotewrite/prom

18

® Explore < Prometheus

A
Metrics browser > histogram_quantile(.9, sum by (le) (rate(latency_bucket{

Query type Range | Min step Exemplars

Metrics browser > histogram_quantile(.5, sum by (le) (rate(latency_bucket{

Query type Range & N Min step Exemplars

+ Add query O Query history @ Inspector

Graph

200

180

160

140

120

100

80

60

40

20

k

ong",

j=""SPAN_KIND_SERVER"} [5m])))

=""SPAN_KIND_SERVER"}[5m])))

& Run query

v

ADOPTION

Changing people’s mindsets about monitoring

POC & demo

« Start with a single service, end to end

* Showcase the result: how
correlation can help get a better
understanding of the system

* Provide value to the users

Formalize

 ADR: Architecture Decision Records
« Explore different solutions

« Highlight benefits and shortcomings
» Write standards and conventions

20

BENEFITS

Of adoting OpenTelemetry

Reducing cognitive load

« Single stack

* Semantic convention

* Simpler to use and
operate

Towards observability

 (almost) no more silos

* Auto generation of
metrics from traces

* Easier troubleshooting
and understanding of
the platform

Owning the pipeline

No lock-in
Extensible platform
* Open source

Active development

21

SHORTCOMINGS

Various level of maturity depending on the components

Logs data model is not stable yet - although in practice it should not change
Prometheus metrics labels naming convention vs Otel semantic convention
Prometheus Exemplars are not fully supported

22

WHAT'S NEXT

Our next steps

Tracing first

* Simplify instrumentation

* Generate metrics and logs
from traces at the collector
level

Continuous Profiling

Parca - inspired by
Prometheus

Would be great to collect
profiles from the
OpenTelemetry Collector
Backends: Parca,
Pyroscope, ..

23

CONCLUSION

BREAK
THE SILOS

UNIFIED
PLATFORM

EMBRACE THE
COLLECTOR

ENJOY

24

— UBISOFT IT

T ENGINEERING &
z PLATFORM

