

Introduction to Ada
for

Beginning and Experienced
Programmers

Jean-Pierre Rosen

Adalog

www.adalog.fr

Brief History of Ada
• Named after Ada Byron, countess of Lovelace

(1815-1852)
• 1983: The basis

• First industrial language with exceptions, generics, tasking

• 1995: OOP, protected objects, hierarchical
libraries
• First standardized object-oriented language

• 2005: Interfaces, improving existing features
• Putting it all together

• 2012 : Contracts, higher level expressions
• Going formal

Ada 2022 coming soon !

A Free Language

• An international standard
• ISO 8652:2012, freely available
• Does not belong to any company
• Entirely controlled by its users

• Free (and proprietary) compilers
• Many free resources

• Components, APIs, tutorials…
• http://www.adaic.com, http://getadanow.com,

http://libre.adacore.com...

• A dynamic community
• Newgroups : comp.lang.ada, fr.comp.lang.ada
• LinkedIn, Reddit, IRC, Identi.ca, Stack Overflow, GNU

Go Ada Initiative...

Who Uses Ada?

 What's important in a language is what it forbids

What's important in a language is not what it allows

Why Use Ada?

• When failure is not an option
• Of course, Ada is used in safety critical systems...

• Other systems should not fail!
• Buffer overflows are still the most common origin of

security breaches
• Arithmetic overflow, illegal pointers, memory leaks...

• Ada checks a lot at compile time
• Bad design doesn't compile!

What's in Ada
A seemingly

classical
language...

more
different than

it seems

The Building-Block Approach

The Building-Block Approach

Readable, Pascal-Like Syntax
for C in Colour loop

I := I + 1;
end loop;

while I > 1 loop
I := I - 1;

end loop;

Main_Loop :
loop

I := I + 1;

exit Main_Loop when I = 100;
I := I + 2;

end loop Main_Loop;

if I in 1 .. 10 then
Result := Red;

elsif I in 11 .. 20 then
Result := Green;

elsif I in 21 .. 30 then
Result := Blue;

end if;

case I is
when 1 .. 10 =>

Result := Red;
when 11 .. 20 =>

Result := Green;
when 21 .. 30 =>

Result := Blue;
when others =>

Result := Red;
end case;

Mat := ((1, 0, 0),
 (0, 1, 0),
 (0, 0, 1));

Head := new Node'(Value=> 10_000,
 Next => new Node'(Value=> 2009, Next=> null);

Cannot cheat
with loop control

All possible cases
must be given

The compiler does the mapping

Strong Typing System

type Age is range 0..125;
type Floor is range -5 .. 15;

My_Age : Age;
My_Floor: Floor;

...
My_Age := 10; -- OK
My_Floor := 10; -- OK
My_Age := My_Floor; -- FORBIDDEN !

Problem level

Machine level

Age, Floor...

Byte, Int... Language level

You do the mapping

Ada level

Packages (1)

package Colour_Manager is
type Colour is private;
type Density is delta 1.0/256.0 range 0.0 .. 1.0;

Red, Green, Blue : constant Colour;

function "+" (Left, Right : Colour) return Colour;
function "*" (Coeff: Density; Origin : Colour) return Colour;

private
type Colour is

record
R_Density, G_Density, B_Density : Density;

end record;
Red : constant Colour := (1.0, 0.0, 0.0);
Green : constant Colour := (0.0, 1.0, 0.0);
Blue : constant Colour := (0.0, 0.0, 1.0);

end Colour_Manager;

package body Colour_Manager is
...

end Colour_Manager;

Packages (2)

with Colour_Manager;
procedure Paint is

use Colour_Manager;
My_Colour : Colour := 0.5*Blue + 0.5*Red;

begin
-- Make it darker
My_Colour := My_Colour * 0.5;
My_Colour := My_Colour / 2.0; -- Forbidden (or define "/")
...

end Paint;

Abstractions are enforced

Dependences are explicit
➔ no makefiles!

Discriminated Types
type Major is (Letters, Sciences, Technology);
type Grade is delta 0.1 range 0.0 .. 20.0;

type Student_Record (Name_Length : Positive;
 With_Major : Major)
is record
 Name : String(1 .. Name_Length); --Size depends on discriminant
 English : Grade;
 Maths : Grade;

 case With_Major is -- Variant part, according to discriminant
 when Letters =>
 Latin : Grade;
 when Sciences =>
 Physics : Grade;
 Chemistry : Grade;
 when Technology =>
 Drawing : Grade;
 end case;
end record;

Discriminants

Discriminants are to data
what parameters are to subprograms

Object Oriented Programming
• Packages support encapsulation
• Tagged types support dynamic binding
• A class = Encapsulation + dynamic binding

• Design pattern: a tagged type in a package

package Widget is
type Instance is tagged private;
procedure Paint (Self : Instance);
...

private
...

end Widget;

package Menu is
type Instance is new Widget.Instance with private;
procedure Paint (Self : Instance);
...

private
...

end Widget;

Widget'Class

Object Oriented Programming
• Differentiate specific type from class-wide type

procedure Move (Item : Widget'Class;
 X, Y : Coordinates) is
begin

Erase (Item);
Set_Position (Item, X, Y);
Paint (Item);

end Move;

P : Widget.Menu.Pop_Up.Instance;
W : Widget.Window.Instance;

begin
Move (P, X => 23, Y => 45);
Move (W, Y => 19, X => 23);

-- Ada 2005:
P.Move (X => 23, Y => 45);
W.Move (Y => 19, X => 23);
...

Widget

MenuWindow

Pop_Up Scroll_Down

Interfaces (Ada 2005+)

• A type can be derived from one tagged type and
several interfaces
• Methods of an interface are abstract or null

with Ada.Text_IO; use Ada.Text_IO;
package Persistance is

type Services is interface;

procedure Read (F : File_Type; Item : out Services) is abstract;
procedure Write (F : File_Type; Item : in Services) is abstract;

end Persistance;

type Persistant_Window is
new Widget.Window.Instance and Persistance.Services;

Exceptions
• Every run-time error results in an exception

• Buffer overflow
• Dereferencing null
• Device error
• Memory violation (in C code!)
• ...

• Every exception can be handled

..take care of the unexpected unexpected

Once you've taken care of the unexpected...

Generics
• Provide algorithms that work on any data type

with a required set of properties

generic
type Item is private;

procedure Swap (X, Y : in out Item);

procedure Swap (X, Y : in out Item) is
Temp : Item;

begin
Temp := X;
X := Y;
Y := Temp;

end Swap;

procedure Swap_Age is new Swap (Age);
My_Age, His_Age : Age;

begin
Swap_Age (My_Age, His_Age);

Tasking

• Tasking is an integral part of the language
• Not a library

• Tasks (threads) are high level objects

• High level communication and synchronization
• Rendezvous (client/server model)
• Protected objects (passive monitors)

• Tasking is easy to use
• Don't hesitate to put tasks in your programs!

type BitArray is array (Natural range <>) of Boolean;
type Monitor_Info is

record
On : Boolean;
Count : Natural range 0..127;
Status : BitArray (0..7);

end record;

for Monitor_Info use
record

On at 0 range 0 .. 0;
Count at 0 range 1 .. 7;
Status at 0 range 8 .. 15;

end record;

Access to Low Level
• Let the compiler do the hard work

• You describe the high level view
• You describe the low level view
• You work at high level, and get what you want at low level

type BitArray is array (Natural range <>) of Boolean;
type Monitor_Info is

record
On : Boolean;
Count : Natural range 0..127;
Status : BitArray (0..7);

end record;

for Monitor_Info use
record

On at 0 range 0 .. 0;
Count at 0 range 1 .. 7;
Status at 0 range 8 .. 15;

end record;

Access to Low Level
• Let the compiler do the hard work

• You describe the high level view
• You describe the low level view
• You work at high level, and get what you want at low level

MI : Monitor_info;
begin

MI.Status(3) := False;

ANDB [BP-11],-9

Really Low Level
KBytes : constant := 1024;

Memory : Storage_Array (0..640*KBytes-1);
for Memory'Address use To_Address(0);

procedure Poke (Value : Byte; Into : Storage_Offset) is
begin

Memory (Into) := Value;
end Poke;

function Peek (From : Storage_Offset) return Byte is
begin

return Memory (From);
end Peek;

Everything can be done in Ada,
provided it is stated clearly

• You can include machine code...
• You can handle interrupts...

Special Needs Annexes

• An annex is an extension of the standardisation
for specific problem domains.
• An annex contains no new syntax. An annex may define

only packages, pragmas or attributes.

• System Programming Annex

• Real-Time Annex

• Distributed Systems Annex

• Information Systems Annex

• Numerics Annex

• Safety and Security Annex

A Portable Language
• Really portable!

• Configure/automake/conditional compilation... only
compensate for the lack of portability

• The virtual machine concept is just a workaround for the
lack of portability of programming languages.

• But there are Ada compilers for the JVM and .net as well…

• All compilers implement exactly the same
language
• and are checked by passing a conformity suite

• High level constructs protect from differences
between systems

Linux, Windows: 100% same code

Ease of Writing
• Try GNAT's error messages!

• The language protects you from many
mistakes
• Strong typing is not a pain, it's a help!
• If it compiles, it works...
• Spend your time on designing, not chasing stupid bugs

procedure Error is
 Lines : Integer;
begin
 Line := 3;
 Lines = 3;
end Error;

error.adb:4:04: "Line" is undefined
error.adb:4:04: possible misspelling of "Lines"

error.adb:5:10: "=" should be ":="

Components and Tools

• Ada interfaces easily with other languages
• Bindings are available for most usual components

• Posix, Win32, X, Motif, Gtk, Qt, Tcl, Python, Lua, Ncurses,
Bignums, Corba, MySQL, PostGres…

• Unique to Ada:
• AWS (Ada Web Server)

• A complete web development framework

• ASIS (Ada Semantic Interface Specification)
• Makes it easy to write tools to process and analyze Ada

sources

• Many more…

Conclusion

…and discover what higher level programming means

