
Can WebRTC help musicians?
Going beyond traditional and boring use cases to support the arts

Lorenzo Miniero
@elminiero

FOSDEM 2021 Real Time devroom
6th February 2021, Brussels My couch

https://twitter.com/elminiero


Who am I?

Lorenzo Miniero
• Ph.D @ UniNA
• Chairman @ Meetecho
• Main author of Janus

Contacts and info
• lorenzo@meetecho.com
• https://twitter.com/elminiero
• https://www.slideshare.net/LorenzoMiniero
• https://soundcloud.com/lminiero

lorenzo@meetecho.com
https://twitter.com/elminiero
https://www.slideshare.net/LorenzoMiniero
https://soundcloud.com/lminiero


A middle age crisis!

https://soundcloud.com/lminiero

https://soundcloud.com/lminiero


An amazing music ecosystem on Linux



“Can WebRTC help musicians?”

https://linuxmusicians.com/viewtopic.php?t=21617

https://linuxmusicians.com/viewtopic.php?t=21617


Tsahi’s article back in 2017

https://bloggeek.me/sound-guru-webrtc/ (2017)

https://bloggeek.me/sound-guru-webrtc/


Opus helps already!

• WebRTC mandates Opus, and it’s a good thing
• High quality audio codec designed for the Internet
• Very flexible in sampling rates, bitrates, etc.

• Different profiles for voice and music
• Both encoding and decoding vary, in case
• Can be mono and stereo (or more, as we’ll see in a minute!)

• With the right bitrate, it can sound quite good
• ... and most importantly, with the help of WebRTC, real-time!

A “live” example: pre-recorded music via WebRTC
https://janus.conf.meetecho.com/streamingtest

https://janus.conf.meetecho.com/streamingtest


Opus helps already!

• WebRTC mandates Opus, and it’s a good thing
• High quality audio codec designed for the Internet
• Very flexible in sampling rates, bitrates, etc.

• Different profiles for voice and music
• Both encoding and decoding vary, in case
• Can be mono and stereo (or more, as we’ll see in a minute!)

• With the right bitrate, it can sound quite good
• ... and most importantly, with the help of WebRTC, real-time!

A “live” example: pre-recorded music via WebRTC
https://janus.conf.meetecho.com/streamingtest

https://janus.conf.meetecho.com/streamingtest


Opus helps already!

• WebRTC mandates Opus, and it’s a good thing
• High quality audio codec designed for the Internet
• Very flexible in sampling rates, bitrates, etc.

• Different profiles for voice and music
• Both encoding and decoding vary, in case
• Can be mono and stereo (or more, as we’ll see in a minute!)

• With the right bitrate, it can sound quite good
• ... and most importantly, with the help of WebRTC, real-time!

A “live” example: pre-recorded music via WebRTC
https://janus.conf.meetecho.com/streamingtest

https://janus.conf.meetecho.com/streamingtest


Opus helps already!

• WebRTC mandates Opus, and it’s a good thing
• High quality audio codec designed for the Internet
• Very flexible in sampling rates, bitrates, etc.

• Different profiles for voice and music
• Both encoding and decoding vary, in case
• Can be mono and stereo (or more, as we’ll see in a minute!)

• With the right bitrate, it can sound quite good
• ... and most importantly, with the help of WebRTC, real-time!

A “live” example: pre-recorded music via WebRTC
https://janus.conf.meetecho.com/streamingtest

https://janus.conf.meetecho.com/streamingtest


Multiopus: 5.1 and 7.1 surround audio

• This is little known, but Chrome does support surround audio in WebRTC
• Not really documented or standardized, though
• Mostly just there because it’s used by Stadia, today

• Multiopus (5.1 and 7.1)
• Each packet is basically OGG with multiple stereo Opus streams
• Number of streams determines number of channels

• SDP munging needed on both offer and answer to specify the mapping

Some reading material if you’re curious
• https://webrtcbydralex.com/index.php/2020/04/08/surround-sound-5-1-and-7-1-in-

libwebrtc-and-chrome/
• https://github.com/meetecho/janus-gateway/pull/2059 (now supported in Janus)

https://webrtcbydralex.com/index.php/2020/04/08/surround-sound-5-1-and-7-1-in-libwebrtc-and-chrome/
https://webrtcbydralex.com/index.php/2020/04/08/surround-sound-5-1-and-7-1-in-libwebrtc-and-chrome/
https://github.com/meetecho/janus-gateway/pull/2059


Multiopus: 5.1 and 7.1 surround audio

• This is little known, but Chrome does support surround audio in WebRTC
• Not really documented or standardized, though
• Mostly just there because it’s used by Stadia, today

• Multiopus (5.1 and 7.1)
• Each packet is basically OGG with multiple stereo Opus streams
• Number of streams determines number of channels

• SDP munging needed on both offer and answer to specify the mapping

Some reading material if you’re curious
• https://webrtcbydralex.com/index.php/2020/04/08/surround-sound-5-1-and-7-1-in-

libwebrtc-and-chrome/
• https://github.com/meetecho/janus-gateway/pull/2059 (now supported in Janus)

https://webrtcbydralex.com/index.php/2020/04/08/surround-sound-5-1-and-7-1-in-libwebrtc-and-chrome/
https://webrtcbydralex.com/index.php/2020/04/08/surround-sound-5-1-and-7-1-in-libwebrtc-and-chrome/
https://github.com/meetecho/janus-gateway/pull/2059


Multiopus: 5.1 and 7.1 surround audio

• This is little known, but Chrome does support surround audio in WebRTC
• Not really documented or standardized, though
• Mostly just there because it’s used by Stadia, today

• Multiopus (5.1 and 7.1)
• Each packet is basically OGG with multiple stereo Opus streams
• Number of streams determines number of channels

• SDP munging needed on both offer and answer to specify the mapping

Some reading material if you’re curious
• https://webrtcbydralex.com/index.php/2020/04/08/surround-sound-5-1-and-7-1-in-

libwebrtc-and-chrome/
• https://github.com/meetecho/janus-gateway/pull/2059 (now supported in Janus)

https://webrtcbydralex.com/index.php/2020/04/08/surround-sound-5-1-and-7-1-in-libwebrtc-and-chrome/
https://webrtcbydralex.com/index.php/2020/04/08/surround-sound-5-1-and-7-1-in-libwebrtc-and-chrome/
https://github.com/meetecho/janus-gateway/pull/2059


Tutoring and training

• A first simple use case: music lessons
• Can be 1-to-1, or 1-to-many
• In both cases, the closest to a “traditional” scenario

• It can basically be treated as a generic videocall or videoconference
• Most of the interaction is conversational
• No real need for plugging instruments directly in the call

• A regular mic is more than enough in this context

• My sister uses Skype to teach her students...
• ... so why not WebRTC?

Cool add-on: pitch detection?
• https://github.com/720kb/TeachMusicRTC (last updated 6 years ago, though)

https://github.com/720kb/TeachMusicRTC


Tutoring and training

• A first simple use case: music lessons
• Can be 1-to-1, or 1-to-many
• In both cases, the closest to a “traditional” scenario

• It can basically be treated as a generic videocall or videoconference
• Most of the interaction is conversational
• No real need for plugging instruments directly in the call

• A regular mic is more than enough in this context

• My sister uses Skype to teach her students...
• ... so why not WebRTC?

Cool add-on: pitch detection?
• https://github.com/720kb/TeachMusicRTC (last updated 6 years ago, though)

https://github.com/720kb/TeachMusicRTC


Tutoring and training

• A first simple use case: music lessons
• Can be 1-to-1, or 1-to-many
• In both cases, the closest to a “traditional” scenario

• It can basically be treated as a generic videocall or videoconference
• Most of the interaction is conversational
• No real need for plugging instruments directly in the call

• A regular mic is more than enough in this context

• My sister uses Skype to teach her students...
• ... so why not WebRTC?

Cool add-on: pitch detection?
• https://github.com/720kb/TeachMusicRTC (last updated 6 years ago, though)

https://github.com/720kb/TeachMusicRTC


Tutoring and training

• A first simple use case: music lessons
• Can be 1-to-1, or 1-to-many
• In both cases, the closest to a “traditional” scenario

• It can basically be treated as a generic videocall or videoconference
• Most of the interaction is conversational
• No real need for plugging instruments directly in the call

• A regular mic is more than enough in this context

• My sister uses Skype to teach her students...
• ... so why not WebRTC?

Cool add-on: pitch detection?
• https://github.com/720kb/TeachMusicRTC (last updated 6 years ago, though)

https://github.com/720kb/TeachMusicRTC


Broadcasting concerts

• A more interesting scenario: broadcasting concerts

• Basically a 1-to-many (maybe few-to-many?) streaming session

• Still traditional, if you will, but with a few caveats

• The audio source better not be the browser

• Browsers mess with the captured audio a lot (e.g., AEC, AGC, etc.)
• You want the broadcasted audio to be as close as possible to what was captured

• OBS-WebRTC (via WHIP) or the Janus Streaming plugin (wink wink!) can help here

• This scenario is commonly done with HLS, today...

• ... but you may want less delay and/or a way to interact with the audience!



Broadcasting concerts

• A more interesting scenario: broadcasting concerts

• Basically a 1-to-many (maybe few-to-many?) streaming session

• Still traditional, if you will, but with a few caveats

• The audio source better not be the browser

• Browsers mess with the captured audio a lot (e.g., AEC, AGC, etc.)
• You want the broadcasted audio to be as close as possible to what was captured

• OBS-WebRTC (via WHIP) or the Janus Streaming plugin (wink wink!) can help here

• This scenario is commonly done with HLS, today...

• ... but you may want less delay and/or a way to interact with the audience!



Broadcasting concerts

• A more interesting scenario: broadcasting concerts

• Basically a 1-to-many (maybe few-to-many?) streaming session

• Still traditional, if you will, but with a few caveats

• The audio source better not be the browser

• Browsers mess with the captured audio a lot (e.g., AEC, AGC, etc.)
• You want the broadcasted audio to be as close as possible to what was captured

• OBS-WebRTC (via WHIP) or the Janus Streaming plugin (wink wink!) can help here

• This scenario is commonly done with HLS, today...

• ... but you may want less delay and/or a way to interact with the audience!



About interacting with the audience...



About interacting with the audience...



Not really music, but close enough!

https://chrisuehlinger.com/blog/2020/06/16/unshattering-the-audience-building-theatre-
on-the-web-in-2020

https://chrisuehlinger.com/blog/2020/06/16/unshattering-the-audience-building-theatre-on-the-web-in-2020
https://chrisuehlinger.com/blog/2020/06/16/unshattering-the-audience-building-theatre-on-the-web-in-2020


Playing with music and WebRTC

• Many cool things that can be done with
WebRTC

• e.g., browser or native app as an UI to
a remote music setup

• Several more or less basic use cases
come to mind

• Writing music in a browser
• Interaction with (remote) instruments
• Visual synchronization of music data
• Integration in (remote) DAW
• Distributed jam sessions
• ...



Playing with music and WebRTC

• Many cool things that can be done with
WebRTC

• e.g., browser or native app as an UI to
a remote music setup

• Several more or less basic use cases
come to mind

• Writing music in a browser
• Interaction with (remote) instruments
• Visual synchronization of music data
• Integration in (remote) DAW
• Distributed jam sessions
• ...



A silly approach at online composition!

https://youtu.be/d1hOR27r4uY?t=1158

https://youtu.be/d1hOR27r4uY?t=1158


Playing a keyboard with other people

https://youtu.be/8Hzg4hSJMsQ?t=790

https://youtu.be/8Hzg4hSJMsQ?t=790


Playing a keyboard with other people

https://youtu.be/8Hzg4hSJMsQ?t=790

https://youtu.be/8Hzg4hSJMsQ?t=790


Web MIDI API + Insertable Streams

https://twitter.com/komasshu/status/1329785808446836736

https://twitter.com/komasshu/status/1329785808446836736


Jam sessions

• What about really playing with other people, though?
• Harder to do because of this ugly pandemic...

• Only apparently a traditional use case
• Yes, we can see it as a “conference” of sorts...
• ... but we’re not really talking, and latency is much more important

• Browsers are not a good option, here
• Pipeline may be good for voice, but latency too high for live music

• Unfortunately, on Linux they don’t support Jack, only Pulseaudio

• Hard to capture anything else than a microphone

• Besides, as we said they’ll mess with the source audio anyway



Jam sessions

• What about really playing with other people, though?
• Harder to do because of this ugly pandemic...

• Only apparently a traditional use case
• Yes, we can see it as a “conference” of sorts...
• ... but we’re not really talking, and latency is much more important

• Browsers are not a good option, here
• Pipeline may be good for voice, but latency too high for live music

• Unfortunately, on Linux they don’t support Jack, only Pulseaudio

• Hard to capture anything else than a microphone

• Besides, as we said they’ll mess with the source audio anyway



Jam sessions

• What about really playing with other people, though?
• Harder to do because of this ugly pandemic...

• Only apparently a traditional use case
• Yes, we can see it as a “conference” of sorts...
• ... but we’re not really talking, and latency is much more important

• Browsers are not a good option, here
• Pipeline may be good for voice, but latency too high for live music

• Unfortunately, on Linux they don’t support Jack, only Pulseaudio

• Hard to capture anything else than a microphone

• Besides, as we said they’ll mess with the source audio anyway



What about a native approach?

• A few, non-WebRTC, native solutions exist already
• e.g., Jamulus and NINJAM (both open source)

• It might be interesting to experiment with WebRTC as well
• e.g., Native client that uses Jack for audio input/output
• WebRTC exchange of live streams (P2P or via a server)

Idea for a personal fun/pet project of mine
• Native application based on GStreamer
• Ability to add local instruments, captured via Jack and encoded with Opus
• Janus as the reference WebRTC server for all the jam session “participants”

• Publishing local instruments, subscribing to remote ones



What about a native approach?

• A few, non-WebRTC, native solutions exist already
• e.g., Jamulus and NINJAM (both open source)

• It might be interesting to experiment with WebRTC as well
• e.g., Native client that uses Jack for audio input/output
• WebRTC exchange of live streams (P2P or via a server)

Idea for a personal fun/pet project of mine
• Native application based on GStreamer
• Ability to add local instruments, captured via Jack and encoded with Opus
• Janus as the reference WebRTC server for all the jam session “participants”

• Publishing local instruments, subscribing to remote ones



What about a native approach?

• A few, non-WebRTC, native solutions exist already
• e.g., Jamulus and NINJAM (both open source)

• It might be interesting to experiment with WebRTC as well
• e.g., Native client that uses Jack for audio input/output
• WebRTC exchange of live streams (P2P or via a server)

Idea for a personal fun/pet project of mine
• Native application based on GStreamer
• Ability to add local instruments, captured via Jack and encoded with Opus
• Janus as the reference WebRTC server for all the jam session “participants”

• Publishing local instruments, subscribing to remote ones



The ugliest diagram you’ll see today



A distributed/remote concert

• Whatever the approach, it might be useful to stream this remote session

• A truly distributed concert!

• If the session can be captured, it can be broadcast

• If an SFU is used, streams can be relayed as-is (they’re already there)

• Basically a few-to-many conferencing session

• Audio can also be mixed, though, either on the server or client side

• Many already use OBS for that, so OBS-WebRTC (WHIP) may be a simple option

• Server-side mixing may be more “balanced” in terms of delay, though?

• In general, same considerations made before on broadcasting apply here too



A distributed/remote concert

• Whatever the approach, it might be useful to stream this remote session

• A truly distributed concert!

• If the session can be captured, it can be broadcast

• If an SFU is used, streams can be relayed as-is (they’re already there)

• Basically a few-to-many conferencing session

• Audio can also be mixed, though, either on the server or client side

• Many already use OBS for that, so OBS-WebRTC (WHIP) may be a simple option

• Server-side mixing may be more “balanced” in terms of delay, though?

• In general, same considerations made before on broadcasting apply here too



A distributed/remote concert

• Whatever the approach, it might be useful to stream this remote session

• A truly distributed concert!

• If the session can be captured, it can be broadcast

• If an SFU is used, streams can be relayed as-is (they’re already there)

• Basically a few-to-many conferencing session

• Audio can also be mixed, though, either on the server or client side

• Many already use OBS for that, so OBS-WebRTC (WHIP) may be a simple option

• Server-side mixing may be more “balanced” in terms of delay, though?

• In general, same considerations made before on broadcasting apply here too



Thanks! Questions? Comments?

Get in touch!
• https://twitter.com/elminiero
• https://twitter.com/meetecho
• https://www.meetecho.com

https://twitter.com/elminiero
https://twitter.com/meetecho
https://www.meetecho.com

