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About Pengutronix

 30+ Colleages
 Embedded Linux Operating 

System Development
 Customers in all Industries
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About Me

Chris Fiege
Senior Hardware Developer 

 cfi@pengutronix.de 

 SmithChart

 SmithChart
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Agenda

1) Why lab automation?

2) Labgrid overview

3) Demos!

4) Lessons learned
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Controlling an Embedded Linux Device?
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Motivation for Lab Automation?


CC BY-SA 2.0 https://commons.wikimedia.org/wiki/File:Series_of_build_lights.jpg

  https://www.needpix.com/photo/download/697794/
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labgrid

 Python-Library
 Open Source: License: LGPL 2.1
  github.com/labgrid-project/
  labgrid.readthedocs.io
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Design Criteria

 Shared hardware pool for interactive and CI/CT jobs
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Design Criteria

 Shared hardware pool for interactive and CI/CT jobs
 No software components on the DUT
 Intended to be extendable:

Nothing should be in your way for special cases.
 No integrated scheduler
 No integrated build system
 No new testing framework
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labgrid: Lab Hardware Abstraction
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Distributed Architecture: labgrid‘s View
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Distributed Architecture: labgrid‘s View
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Distributed Architecture: labgrid‘s View
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Demo Time
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Lessons Learned
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Lessons Learned

Single hardware pool for interactive and CI/CT
  ⊕ Only one set of hardware is needed
  ⊕ Easier debugging of failing tests
 ⊕ /⊖ Added complexity for provisioning of DUT from scratch
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Lessons Learned

Test suite has full hardware control
  ⊕ Handling of any special or edge cases for a DUT

 labgrid allows custom code in test suites

  ⊖ Added complexity for full hardware control
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Lessons Learned

Strategies are also useable for interactive and scripting
  ⊕ Full control over DUT state in interactive and scripting
  ⊕ Reproduceable workflows

  → Simple handover within your team
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Lessons Learned

USB 
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Lessons Learned

USB is a bad idea
  ⊕ easy to use, widely available
  ⊖ stability issues
  ⊖ consumer USB devices have bugs
  ⊖ hard to debug

https://elinux.org/File:ATS2019-cfi-embedded-testing_handout.pdf
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Lessons Learned

Only Locking + Reservation and no Scheduler
  ⊕ CI already has a scheduler, no need to re-invent the wheel
  ⊖ Relies on developers to unlock their DUTs for CI/CT to run
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Lessons Learned

Dynamic Resources



 37/42

Lessons Learned

Dynamic Resources
  ⊕ Allows to sync a workflow to (USB) devices appearing
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Lessons Learned

Distributed Architecture
  ⊕ DUTs can be shared and accessed from everywhere
  ⊕ Noisy or large DUTs can be outside of your office
  ⊖ System is complex: more moving parts involved
  ⊖ Error reporting in such system is hard:

     Identifying the real cause for an error is still a manual
     debugging effort.
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Thank you!

Questions?
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Design Criteria

 Shared hardware pool for interactive and CI/CT jobs
 No software components on the DUT
 Expandable software architecture:

Nothing should be in your way for special cases.
 No integrated scheduler
 No integrated build system


