
https://www.pengutronix.de

About the joy and tears of testing
Embedded Devices

Chris Fiege <cfi@pengutronix.de>

 4/42

About Pengutronix

 30+ Colleages
 Embedded Linux Operating

System Development
 Customers in all Industries

 5/42

About Me

Chris Fiege
Senior Hardware Developer

 cfi@pengutronix.de

 SmithChart

 SmithChart

 6/42

Agenda

1) Why lab automation?

2) Labgrid overview

3) Demos!

4) Lessons learned

 7/42

Controlling an Embedded Linux Device?

HDMI, RGB, DSI

SD-Card

USB Host, USB Device

RS232, UART, RS485, Modbus
Ethernet, CAN, Wifi, Bluetooth

Ethernet

USB Host

DUT

DUT

DUT

DUT

Power Supply

RS232, UART

GPIO CAN

USB

Test-
Server

1-Wire via USB

Power Supply
RS232, UART
GPIO
CAN
USB

Test-
Server

Test-
Server

 8/42

Motivation for Lab Automation?


CC BY-SA 2.0 https://commons.wikimedia.org/wiki/File:Series_of_build_lights.jpg

  https://www.needpix.com/photo/download/697794/

 9/42

labgrid

 Python-Library
 Open Source: License: LGPL 2.1
  github.com/labgrid-project/
  labgrid.readthedocs.io

 10/42

Design Criteria

 Shared hardware pool for interactive and CI/CT jobs

 11/42

Design Criteria

 Shared hardware pool for interactive and CI/CT jobs
 No software components on the DUT

 12/42

Design Criteria

 Shared hardware pool for interactive and CI/CT jobs
 No software components on the DUT
 Intended to be extendable:

Nothing should be in your way for special cases.

 13/42

Design Criteria

 Shared hardware pool for interactive and CI/CT jobs
 No software components on the DUT
 Intended to be extendable:

Nothing should be in your way for special cases.
 No integrated scheduler
 No integrated build system

 14/42

Design Criteria

 Shared hardware pool for interactive and CI/CT jobs
 No software components on the DUT
 Intended to be extendable:

Nothing should be in your way for special cases.
 No integrated scheduler
 No integrated build system
 No new testing framework

 15/42

labgrid: Lab Hardware Abstraction

HDMI, RGB, DSI

SD-Card

USB Host, USB Device

RS232, UART, RS485, Modbus
Ethernet, CAN, Wifi, Bluetooth

Ethernet

USB Host

DUT

DUT

DUT

DUT

Power Supply

RS232, UART

GPIOCAN

USB

Test-
Server

1-Wire via USB

Power Supply
RS232, UART
GPIO
CAN
USB

Test-
Server

Test-
Server

labgrid

command
line interface

pytest scripting
interface

Serial Power GPIOs Eth
USB:
Fastboot
Bootstrap

Mass-
Storage

many
more

 16/42

Distributed Architecture: labgrid‘s View

HDMI, RGB, DSI

SD-Card

USB Host, USB Device

RS232, UART, RS485, Modbus
Ethernet, CAN, Wifi, Bluetooth

Ethernet

USB Host

DUT

DUT

Power Supply

RS232, UART

GPIOCAN

USB

Exporter

1-Wire via USB

Exporter

Coordinator

labgrid

command
line interface

pytest scripting
interace

Serial PDU GPIOs Eth USB:
Fastboot

Mass-
Storage

many
more

PowerProtocol
ConsoleProtocol
DigitalOutputProtocol
BootstrapProtocol

Power Protocol
ConsoleProtocol
DigitalOutputProtocol
BootstrapProtocol Client

Client

Resources

 17/42

Distributed Architecture: labgrid‘s View

HDMI, RGB, DSI

SD-Card

USB Host, USB Device

RS232, UART, RS485, Modbus
Ethernet, CAN, Wifi, Bluetooth

Ethernet

USB Host

DUT

DUT

Power Supply

RS232, UART

GPIOCAN

USB

Exporter

1-Wire via USB

Exporter

Coordinator

labgrid

command
line interface

pytest scripting
interace

Serial PDU GPIOs Eth USB:
Fastboot

Mass-
Storage

many
more

PowerProtocol
ConsoleProtocol
DigitalOutputProtocol
BootstrapProtocol

Power Protocol
ConsoleProtocol
DigitalOutputProtocol
BootstrapProtocol Client

Client

Resources

 18/42

Distributed Architecture: labgrid‘s View

HDMI, RGB, DSI

SD-Card

USB Host, USB Device

RS232, UART, RS485, Modbus
Ethernet, CAN, Wifi, Bluetooth

Ethernet

USB Host

DUT

DUT

Power Supply

RS232, UART

GPIOCAN

USB

Exporter

1-Wire via USB

Exporter

Coordinator

labgrid

command
line interface

pytest scripting
interace

Serial PDU GPIOs Eth USB:
Fastboot

Mass-
Storage

many
more

PowerProtocol
ConsoleProtocol
DigitalOutputProtocol
BootstrapProtocol

Power Protocol
ConsoleProtocol
DigitalOutputProtocol
BootstrapProtocol Client

Client

Place

Place

 19/42

Distributed Architecture: labgrid‘s View

HDMI, RGB, DSI

SD-Card

USB Host, USB Device

RS232, UART, RS485, Modbus
Ethernet, CAN, Wifi, Bluetooth

Ethernet

USB Host

DUT

DUT

Power Supply

RS232, UART

GPIOCAN

USB

Exporter

1-Wire via USB

Exporter

Coordinator

labgrid

command
line interface

pytest scripting
interace

Serial PDU GPIOs Eth USB:
Fastboot

Mass-
Storage

many
more

PowerProtocol
ConsoleProtocol
DigitalOutputProtocol
BootstrapProtocol

Power Protocol
ConsoleProtocol
DigitalOutputProtocol
BootstrapProtocol Client

Client

Target

Target

 20/42

Demo Time

 21/42

Lessons Learned

Single hardware pool for interactive and CI/CT

 22/42

Lessons Learned

Single hardware pool for interactive and CI/CT
 ⊕ Only one set of hardware is needed
 ⊕ Easier debugging of failing tests

 23/42

Lessons Learned

Single hardware pool for interactive and CI/CT
 ⊕ Only one set of hardware is needed
 ⊕ Easier debugging of failing tests
 ⊕ /⊖ Added complexity for provisioning of DUT from scratch

 24/42

Lessons Learned

Test suite has full hardware control

 25/42

Lessons Learned

Test suite has full hardware control
 ⊕ Handling of any special or edge cases for a DUT

 labgrid allows custom code in test suites

 26/42

Lessons Learned

Test suite has full hardware control
 ⊕ Handling of any special or edge cases for a DUT

 labgrid allows custom code in test suites

 ⊖ Added complexity for full hardware control

 27/42

Lessons Learned

Strategies are also useable for interactive and scripting

 28/42

Lessons Learned

Strategies are also useable for interactive and scripting
 ⊕ Full control over DUT state in interactive and scripting
 ⊕ Reproduceable workflows

 → Simple handover within your team

 29/42

Lessons Learned

USB

 30/42

Lessons Learned

USB
 ⊕ easy to use, widely available

 31/42

Lessons Learned

USB is a bad idea
 ⊕ easy to use, widely available
 ⊖ stability issues
 ⊖ consumer USB devices have bugs
 ⊖ hard to debug

 32/42

Lessons Learned

USB is a bad idea
 ⊕ easy to use, widely available
 ⊖ stability issues
 ⊖ consumer USB devices have bugs
 ⊖ hard to debug

https://elinux.org/File:ATS2019-cfi-embedded-testing_handout.pdf

 33/42

Lessons Learned

Only Locking + Reservation and no Scheduler

 34/42

Lessons Learned

Only Locking + Reservation and no Scheduler
 ⊕ CI already has a scheduler, no need to re-invent the wheel

 35/42

Lessons Learned

Only Locking + Reservation and no Scheduler
 ⊕ CI already has a scheduler, no need to re-invent the wheel
 ⊖ Relies on developers to unlock their DUTs for CI/CT to run

 36/42

Lessons Learned

Dynamic Resources

 37/42

Lessons Learned

Dynamic Resources
 ⊕ Allows to sync a workflow to (USB) devices appearing

 38/42

Lessons Learned

Distributed Architecture

 39/42

Lessons Learned

Distributed Architecture
 ⊕ DUTs can be shared and accessed from everywhere
 ⊕ Noisy or large DUTs can be outside of your office

 40/42

Lessons Learned

Distributed Architecture
 ⊕ DUTs can be shared and accessed from everywhere
 ⊕ Noisy or large DUTs can be outside of your office
 ⊖ System is complex: more moving parts involved
 ⊖ Error reporting in such system is hard:

 Identifying the real cause for an error is still a manual
 debugging effort.

https://www.pengutronix.de

Thank you!

Questions?

 48/42

Design Criteria

 Shared hardware pool for interactive and CI/CT jobs
 No software components on the DUT
 Expandable software architecture:

Nothing should be in your way for special cases.
 No integrated scheduler
 No integrated build system

