
Software Ecosystems as
Networks

Advances on the FASTEN project

Paolo Boldi

Università degli Studi di
Milano

Italy

The FASTEN Project
❖ Fine-Grained Analysis of SofTware Ecosystems as Networks

❖ Part of the EU H2020-ICT-2018-2020 Program

❖ Consortium 

Why FASTEN?

Sharing through software libraries

Sharing through software libraries

❖ Internet made the dream of collaborative development a
reality, by means of libraries that are made available:

Sharing through software libraries

❖ Internet made the dream of collaborative development a
reality, by means of libraries that are made available:

❖ on repositories (SourceForge, GitHub, BitBucket, …)

Sharing through software libraries

❖ Internet made the dream of collaborative development a
reality, by means of libraries that are made available:

❖ on repositories (SourceForge, GitHub, BitBucket, …)

❖ or forges (Maven, PyPi, CPAN, …)

Industrial revolution

at the harbour of software development

Industrial revolution

at the harbour of software development

❖ All trades, arts, and handiworks have gained by
division of labour, namely, when, instead of one
man doing everything, each confines himself to a
certain kind of work distinct from others in the
treatment it requires, so as to be able to perform it
with greater facility and in the greatest
perfection. Where the different kinds of work are
not distinguished and divided, where everyone is
a jack-of-all-trades, there manufactures remain
still in the greatest barbarism.

Immanuel Kant

Groundwork for the Metaphysics

 of Morals (1785)

Dependency graphs

Dependency graphs

❖ Library+versions and their
dependencies form (complex,
huge) dependency networks

Dependency graphs

❖ Library+versions and their
dependencies form (complex,
huge) dependency networks

❖ Version constraints make these
networks more complicated
than simple graphs

Dependency graphs

❖ Library+versions and their
dependencies form (complex,
huge) dependency networks

❖ Version constraints make these
networks more complicated
than simple graphs

❖ Package manager will finally
determine which version is
chosen for each library

The dependency heaven

The dependency heaven

❖ Relying on an
ecosystem of easy-to-
use well written
libraries made the
dream of code reuse a
reality

The dependency hell

The dependency hell

❖ A bug or security
breach or legal issue
concerning one single
piece…

❖ …can make the whole
tower fall!

Recent dependency nightmares

Recent dependency nightmares

❖ The leftpad incident (2016): millions of websites
affected

Recent dependency nightmares

❖ The leftpad incident (2016): millions of websites
affected

❖ The Equifax breach (2017): costed 4B$

Ecosystems

Ecosystems
❖ Ecosystems grow at mind boggling speed

Ecosystems
❖ Ecosystems grow at mind boggling speed

❖ JavaScript projects have an average of 80 (Zimmerman et al.,
2019) transitive dependencies

Ecosystems
❖ Ecosystems grow at mind boggling speed

❖ JavaScript projects have an average of 80 (Zimmerman et al.,
2019) transitive dependencies

❖ 50% of dependencies change in a 6-month time (Hejderup et al.,
2019)

Ecosystems
❖ Ecosystems grow at mind boggling speed

❖ JavaScript projects have an average of 80 (Zimmerman et al.,
2019) transitive dependencies

❖ 50% of dependencies change in a 6-month time (Hejderup et al.,
2019)

❖ And deteriorate almost as rapidly

Ecosystems
❖ Ecosystems grow at mind boggling speed

❖ JavaScript projects have an average of 80 (Zimmerman et al.,
2019) transitive dependencies

❖ 50% of dependencies change in a 6-month time (Hejderup et al.,
2019)

❖ And deteriorate almost as rapidly

❖ Existence of package bottlenecks (the removal on one single
package can bring down almost 40% of the system)

Ecosystems
❖ Ecosystems grow at mind boggling speed

❖ JavaScript projects have an average of 80 (Zimmerman et al.,
2019) transitive dependencies

❖ 50% of dependencies change in a 6-month time (Hejderup et al.,
2019)

❖ And deteriorate almost as rapidly

❖ Existence of package bottlenecks (the removal on one single
package can bring down almost 40% of the system)

❖ Rich get richer: few maintainers dominate most packages

Epidemics in dependency graphs

Lib A, vers 1.0

Lib B, vers 2.5

Lib C, vers 1.5Lib D, vers 3.0

Epidemics in dependency graphs

Lib A, vers 1.0

Lib B, vers 2.5

Lib C, vers 1.5Lib D, vers 3.0

A vulnerability alert

is issued

about Lib D, vers 3.0

Epidemics in dependency graphs

Lib A, vers 1.0

Lib B, vers 2.5

Lib C, vers 1.5Lib D, vers 3.0

A vulnerability alert

is issued

about Lib D, vers 3.0

All libraries in this

graph are infected!

GitHub security alerts

But is this enough?

Isn’t this kind of tool enough?

Isn’t this kind of tool enough?

❖ In theory. But in practice:

Isn’t this kind of tool enough?

❖ In theory. But in practice:

❖ Developers don’t update

Isn’t this kind of tool enough?

❖ In theory. But in practice:

❖ Developers don’t update

❖ → Vulnerabilities proliferate

Isn’t this kind of tool enough?

❖ In theory. But in practice:

❖ Developers don’t update

❖ → Vulnerabilities proliferate

❖ Why?

Isn’t this kind of tool enough?

❖ In theory. But in practice:

❖ Developers don’t update

❖ → Vulnerabilities proliferate

❖ Why?

❖ Our tools are not sharp enough for what we want

Examples of what people want

Developers Maintainers

Update Does this outdated dependency
really break my code?

How do I update without breaking
too many of my important clients?

Violations Am I violating anyone’s
copyright?

How do I spot instances of my
code being distributed without

permission?

Epidemics in dependency graphs

Lib A, vers 1.0

Lib B, vers 2.5

Lib C, vers 1.5Lib D, vers 3.0

Epidemics in dependency graphs
A.f0

A.f2

A.f3

B.f1

B.f2

B.f3

C.f1

C.f2

D.f1

D.f2

D.f3

Epidemics in dependency graphs
A.f0

A.f2

A.f3

B.f1

B.f2

B.f3

C.f1

C.f2

D.f1

D.f2

D.f3

A vulnerability alert

is issued

about Lib D, vers 3.0,

function f3

Epidemics in dependency graphs
A.f0

A.f2

A.f3

B.f1

B.f2

B.f3

C.f1

C.f2

D.f1

D.f2

D.f3

A vulnerability alert

is issued

about Lib D, vers 3.0,

function f3

Epidemics in dependency graphs
A.f0

A.f2

A.f3

B.f1

B.f2

B.f3

C.f1

C.f2

D.f1

D.f2

D.f3

A vulnerability alert

is issued

about Lib D, vers 3.0,

function f3

Much more informative!

Epidemics in dependency graphs
A.f0

A.f2

A.f3

B.f1

B.f2

B.f3

C.f1

C.f2

D.f1

D.f2

D.f3

A vulnerability alert

is issued

about Lib D, vers 3.0,

function f3

Epidemics in dependency graphs
A.f0

A.f2

A.f3

B.f1

B.f2

B.f3

C.f1

C.f2

D.f1

D.f2

D.f3

A vulnerability alert

is issued

about Lib D, vers 3.0,

function f3

Avoid the cry wolf effect!

Examples

Examples
❖ Fully precise change impact analysis: “How many libraries

are affected if I remove/modify a certain method/interface?”

Examples
❖ Fully precise change impact analysis: “How many libraries

are affected if I remove/modify a certain method/interface?”

❖ Fully precise license compliance: “Is my library compliant
with the licenses of the libraries that I depend from (directly or
indirectly)? (e.g., am I linking any GPL code?)”

Examples
❖ Fully precise change impact analysis: “How many libraries

are affected if I remove/modify a certain method/interface?”

❖ Fully precise license compliance: “Is my library compliant
with the licenses of the libraries that I depend from (directly or
indirectly)? (e.g., am I linking any GPL code?)”

❖ Fully precise risk profiling: “Does this vulnerability affect my
code?”

Examples
❖ Fully precise change impact analysis: “How many libraries

are affected if I remove/modify a certain method/interface?”

❖ Fully precise license compliance: “Is my library compliant
with the licenses of the libraries that I depend from (directly or
indirectly)? (e.g., am I linking any GPL code?)”

❖ Fully precise risk profiling: “Does this vulnerability affect my
code?”

❖ Centrality analysis: “What methods/functions are more central
within a given ecosystem? are there bottlenecks? critical points?”

The FASTEN toolchain

The FASTEN toolchain

Project information

Security

alerts

Repositories

The FASTEN toolchain

Project information

Security

alerts

Repositories

publish

Data stream
publish

publish

The FASTEN toolchain

Project information

Security

alerts

Repositories

publish

Data stream

FASTEN

server

publish

publish

The FASTEN toolchain

Project information

Security

alerts

Repositories

publish

Data stream

FASTEN

server

Call-graph

construction

publish

publish

The FASTEN toolchain

Project information

Security

alerts

Repositories

publish

Data stream

FASTEN

server

Call-graph

construction

Storage

layer

publish

publish

The FASTEN toolchain

Project information

Security

alerts

Repositories

publish

Data stream

FASTEN

server

Call-graph

construction

Storage

layer

Analysis

layer

publish

publish

The FASTEN toolchain

Project information

Security

alerts

Repositories

publish

Data stream

FASTEN

server

Call-graph

construction

Storage

layer

Analysis

layer

RE
ST

 A
pi

publish

publish

The FASTEN toolchain

Project information

Security

alerts

Repositories

publish

Data stream

FASTEN

server

Call-graph

construction

Storage

layer

Analysis

layer

RE
ST

 A
pi

W
eb

 U
I

publish

publish

The FASTEN toolchain

Project information

Security

alerts

Repositories

publish

Data stream

FASTEN

server

Call-graph

construction

Storage

layer

Analysis

layer

RE
ST

 A
pi

W
eb

 U
I

publish

publish

Continuous

integration server

The FASTEN toolchain

Project information

Security

alerts

Repositories

publish

Data stream

FASTEN

server

Call-graph

construction

Storage

layer

Analysis

layer

RE
ST

 A
pi

W
eb

 U
I

publish

publish

Continuous

integration server

The FASTEN toolchain

Project information

Security

alerts

Repositories

publish

Data stream

FASTEN

server

Call-graph

construction

Storage

layer

Analysis

layer

RE
ST

 A
pi

W
eb

 U
I

publish

publish

Continuous

integration server

Developer

Preliminary results

Server-side highlights

Dataflow example: CG generation
Done

Universal function identifiers
How to uniquely reference a function in a global namespace?

fasten://

/mvn

/org.slf4j.slf4j-api

/1.2.3

/org.slf4j.helpers

/BasicMarkerFactory.getDetachedMarker

(%2Fjava.lang%2FString)

%2Forg.slf4j%2FMarker

scheme

forge

artifact

version

namespace

function

argument(s)

return type

Done

Universal function identifiers
How to uniquely reference a function in a global namespace?

fasten://

/mvn

/org.slf4j.slf4j-api

/1.2.3

/org.slf4j.helpers

/BasicMarkerFactory.getDetachedMarker

(%2Fjava.lang%2FString)

%2Forg.slf4j%2FMarker

scheme

forge

artifact

version

namespace

function

argument(s)

return type

Generic format +

Java

Python

C

Done

Call graph transport
{

 "product": "foo",

 "forge": "mvn",

 "depset": [

 [

 { "product": "a", "forge": "mvn", "constraints": ["[1.2..1.5]", "[2.3..]"] },

 { "product": "b", "forge": "mvn", "constraints": ["[2.0.1]"] }

]

],

 "version": "3.10.0.7",

 "cha": {

 "/name.space/A": {

 "methods": {

 "0": "/name.space/A.A()%2Fjava.lang%2FVoidType",

 "1": "/name.space/A.g(%2Fjava.lang%2FString)%2Fjava.lang%2FInteger"

 },

 "superInterfaces": ["/java.lang/Serializable"],

 "sourceFile": "filename.java",

 "superClasses": ["/java.lang/Object"]

 }

 },

 "graph": {

 "internalCalls": [

 [0, 1]

],

 "externalCalls": [

 ["1", "///their.package/TheirClass.method()Response", { "invokeinterface": "1" }]

]

 },

 "timestamp": 123

}

Done

Call graph transport
{

 "product": "foo",

 "forge": "mvn",

 "depset": [

 [

 { "product": "a", "forge": "mvn", "constraints": ["[1.2..1.5]", "[2.3..]"] },

 { "product": "b", "forge": "mvn", "constraints": ["[2.0.1]"] }

]

],

 "version": "3.10.0.7",

 "cha": {

 "/name.space/A": {

 "methods": {

 "0": "/name.space/A.A()%2Fjava.lang%2FVoidType",

 "1": "/name.space/A.g(%2Fjava.lang%2FString)%2Fjava.lang%2FInteger"

 },

 "superInterfaces": ["/java.lang/Serializable"],

 "sourceFile": "filename.java",

 "superClasses": ["/java.lang/Object"]

 }

 },

 "graph": {

 "internalCalls": [

 [0, 1]

],

 "externalCalls": [

 ["1", "///their.package/TheirClass.method()Response", { "invokeinterface": "1" }]

]

 },

 "timestamp": 123

}

Generic format +

Java

Python

C

Done

Language-dependent

call graph generation

Done

Language-dependent

call graph generation

❖ Java: Based on tools from the OPAL project (stg-tud/opal)

❖ Python: New static analysis tool: PyCG (Submitted ICSE 2020)

❖ C: CScout for static call graphs; gprof, callgrind for dynamic calls

Done

Current CG results

Language /
Ecosystem

Total
Packages

Results

Packages Nodes Edges Success
Rate

C / Debian
Buster

7.380 (757
analyzed) *

531 491.721 579.253 70%

Java / Maven 2.7M artifacts 2.4M ~5B+ ~56B+ 89.13%

Python / PyPI ~740 K ~520K ~211M ~310M 70%

In progress

* Technical issues prohibited us from downloading the rest of the packages.

Call graph stitching
How to scale call graph processing to 10^6 package versions?

In progress

Call graph stitching

❖ Idea: Decouple package resolution from call graph
generation

How to scale call graph processing to 10^6 package versions?

In progress

Call graph stitching

❖ Idea: Decouple package resolution from call graph
generation

❖ Build and store call graphs per package version, incl.:

How to scale call graph processing to 10^6 package versions?

In progress

Call graph stitching

❖ Idea: Decouple package resolution from call graph
generation

❖ Build and store call graphs per package version, incl.:

❖ unresolved calls

How to scale call graph processing to 10^6 package versions?

In progress

Call graph stitching

❖ Idea: Decouple package resolution from call graph
generation

❖ Build and store call graphs per package version, incl.:

❖ unresolved calls

❖ class hierarchies (Java, Python)

How to scale call graph processing to 10^6 package versions?

In progress

Call graph stitching

❖ Idea: Decouple package resolution from call graph
generation

❖ Build and store call graphs per package version, incl.:

❖ unresolved calls

❖ class hierarchies (Java, Python)

❖ Call graph stitching: Resolve unresolved  
calls given a dependency tree

How to scale call graph processing to 10^6 package versions?

In progress

The database schema
Done

Examples of queries:

largest packages (# of functions)

select p.package_name, pv.version, count(*)

from package_versions pv

 join packages p on pv.package_id = p.id

 join modules m on m.package_version_id = pv.id

 join callables c on c.module_id = m.id

group by p.package_name, pv.version

order by count(*) desc

limit 10;

Examples of queries:

Packages depending on vulnerable package

SELECT package_version_id, p.package_name, pv.version

FROM dependencies d

JOIN package_versions pv ON pv.id = d.package_version_id

JOIN packages p ON p.id = pv.package_id

WHERE d.dependency_id =

 (SELECT id

 FROM packages

 WHERE package_name = 'com.google.guava:guava')

AND '20.0' = ANY(d.version_range);

Graph analytics  
(results shown refer to Java CG’s)

In progress

Graph analytics  
(results shown refer to Java CG’s)

❖ Graph stored using WebGraph (UMIL)

In progress

Graph analytics  
(results shown refer to Java CG’s)

❖ Graph stored using WebGraph (UMIL)

❖ For 1.1M graphs (2.3B nodes, 18B edges):

In progress

Graph analytics  
(results shown refer to Java CG’s)

❖ Graph stored using WebGraph (UMIL)

❖ For 1.1M graphs (2.3B nodes, 18B edges):

❖ 3.6 bits per edge, plus global ID storage for each node
(9.0 bits per edge overall)

In progress

Graph analytics  
(results shown refer to Java CG’s)

❖ Graph stored using WebGraph (UMIL)

❖ For 1.1M graphs (2.3B nodes, 18B edges):

❖ 3.6 bits per edge, plus global ID storage for each node
(9.0 bits per edge overall)

❖ DB size: 38GB → we can fit the whole of Maven in
RAM

In progress

Graph storage

In progress

Vulnerability Plugin

❖ Gathering vulnerability information (at
package and callable level)

❖ A normalized Vulnerability Object
definition is injected in the metadata
database

❖ Normalization is needed to smooth out
the different sources of information

❖ The plugin continuously pulls updates
for new information and keeps storing
the results

In progress

Analysis plug-ins
RAPID: Risk Analysis and Propagation Inspection for Security
and Maintainability risks

❖ On the server side (to enrich the metadata DB):

❖ Plugin for code maintainability analysis: 
V1 deployed, processed 126K Maven coordinates to date

❖ Plugin for security vulnerability propagation

❖ On the client side:

❖ A user application to model and present risks

In progress

License and Compliance analysis
❖ QMSTR Plugin consists of 3 steps:

1. Use the CG generator to gather information about all
the generated artifacts that will be distributed
together with the source code

2. Execution of static analysis tools that augment the
build graph with license and compliance metadata

3. Generation of a report with package's relevant license
and authorship metadata that is finally distributed

In progress

Client-side highlights

REST API

❖ Implementation of endpoints to expose canned queries
from the metadata database

❖ In development:

❖ Full DB entity support

❖ Custom extension points

In progress

Use cases
❖ Endocode

❖ Endocode developed a license-compliance solution, called Quartermaster

❖ They are integrating FASTEN to improve the precision of their compliance offering

❖ SIG

❖ Integration of FASTEN in BetterCodeHub, their GitHub-connected code quality
monitoring product

❖ XWiki

❖ Risk validation in the dependencies at Maven build time

❖ Risk validation in the installed extensions of an XWiki instance

❖ Filter out available compatible extensions for an XWiki instance

❖ Discoverability of XWiki components in available extensions

In progress

Future timeline

The future

End 2020

Q1 2021

Q2 2021

Q3 2021

REST API, first full version of knowledge base, CG enrichment,
build graph integration, first public announcement
Impact analysis, integration with MVN / PyPI; first external user

Q4 2021

Q1 2022 FASTEN 2?

Industrial use cases integrated; first external adoption

Licensing and security fully integrated;
Data-driven API evolution
Project finished; external integrations

Network analysis will be the next

step for the future of

software development

Network analysis will be the next

step for the future of

software development

Questions?
Paolo Boldi

Università degli Studi di
Milano

Italy

paolo.boldi@unimi.it

