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The FASTEN Project o

* Fine-Grained Analysis of Sof Tware Ecosystems as Networks

+ Part of the EU H2020-ICT-2018-2020 Program
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Sharing through software libraries,

* Internet made the dream of collaborative development a
reality, by means of libraries that are made available:

“ on repositories (SourceForge, GitHub, BitBucket, ...)

* or forges (Maven, PyPi, CPAN, ...)
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Industrial revolution
at the harbour of software development m

All trades, arts, and handiworks have gained by
division of labour, namely, when, instead of one
man doing everything, each confines himself to a
certain kind of work distinct from others in the
treatment it requires, so as to be able to perform it
with greater facility and in the greatest
perfection. Where the different kinds of work are
not distinguished and divided, where everyone is
a jack-of-all-trades, there manufactures remain
still in the greatest barbarism.

Immanuel Kant
Groundwork for the Metaphysics
of Morals (1785)
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networks more complicated
than simple graphs




Dependency graphs

“ Library-+versions and their
dependencies form (complex,
huge) dependency networks

“ Version constraints make these i -
networks more complicated
than simple graphs

* Package manager will finally
determine which version is

chosen for each library
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T'he dependency heaven

* Relying on an
ecosystem of easy-to-
use well written
libraries made the
dream of code reuse a
reality
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T'he dependency hell

* A bug or security
breach or legal issue
concerning one single
plece. ..
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+ ...can make the whole
tower fall!
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Recent dependency mghtmarﬁ%%m

+* The leftpad incident (2016): millions of websites
aftected

* The Equifax breach (2017): costed 4B$
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* Ecosystems grow at mind boggling speed

“ JavaScript projects have an average of 80 (Zimmerman et al.,
2019) transitive dependencies

* 50% of dependencies change in a 6-month time (Hejderup et al.,
2019)

* And deteriorate almost as rapidly

+ Existence of package bottlenecks (the removal on one single
package can bring down almost 40% of the system)

“ Rich get richer: few maintainers dominate most packages
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Epidemics in dependency graphs
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{Lib C, vers 1.5

Lib B, vers 2.5

A vulnerability alert
is issued
about Lib D, vers 3.0
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A vulnerability alert

o is issued
i about Lib D, vers 3.0
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GitHub security alerts

Code Issues 0 Pull requests 0 I'l Projects 0 Wiki il Insights i Settings
Pulse Alerts Dismiss all
Contributors
Traffic A 10pen v 0 Closed Sort ~
Commits A org.springframework:spring-core moderate severity

opened 3 minutes ago by GitHub « pom.xml
Code frequency

Dependency graph GitHub tracks known security vulnerabilities in some dependency manifest files. Learn more about alerts,
Alerts

Network

Forks

But is this enough?
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Isn’t this kind of tool enough

“ In theory. But in practice:

* Developers don’t update

* — Vulnerabilities proliferate
+ Why?

“ QOur tools are not sharp enough for what we want



Examples of what people wanl

Developers Maintainers

Does this outdated dependency How do I update without breaking
really break my code? too many of my important clients?

How do I spot instances of my
code being distributed without
permission?

Am I violating anyone’s

copyright?

Violations
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Epidemics in dependency graphs .
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Epidemics in dependency graphs

B A 4 £ g : B u

Much more informative!
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Epidemics in dependency graphs

A vulnerability alert
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Epidemics in dependency graphs

. , “

void the cry wolf effect!§ A.fO
e
=

A vulnerability alert

is issued
about Lib D, vers 3.0,
function £3




EXamp1€ : FHSTEN C



Examples
FASTEN £

+ Fully precise change impact analysis: “How many libraries
are affected if [ remove/modify a certain method/interface?”



Examples a

+ Fully precise change impact analysis: “How many libraries
are affected if [ remove/modify a certain method/interface?”

“ Fully precise license compliance: “Is my library compliant

with the licenses of the libraries that I depend from (directly or
indirectly)? (e.g., am I linking any GPL code?)”



Examples a

+ Fully precise change impact analysis: “How many libraries
are affected if [ remove/modify a certain method/interface?”

“ Fully precise license compliance: “Is my library compliant

with the licenses of the libraries that I depend from (directly or
indirectly)? (e.g., am I linking any GPL code?)”

“ Fully precise risk profiling: “Does this vulnerability affect my

code?”



Examples a

+ Fully precise change impact analysis: “How many libraries
are affected if [ remove/modify a certain method/interface?”

* Fully precise license compliance: “Is my library compliant

with the licenses of the libraries that I depend from (directly or
indirectly)? (e.g., am I linking any GPL code?)”

“ Fully precise risk profiling: “Does this vulnerability affect my

code?”

* Centrality analysis: “What methods/functions are more central
within a given ecosystem? are there bottlenecks? critical points?”
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The FASTEN toolchain s
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The FASTEN toolchain
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Repositories

@ oy

fgthon” @ RubyGems

publish

publish

publish

Data stream

FASTEN
server

Call-graph

construction

Storage
layer

Analysis
layer

FASTEN [

Continuous
integration server

_—

continuum
‘_/ B

¢, Bamboo
&

¢ Jenkins

-

Developer



Preliminary results



Server-side highlights



=

Dataflow example: GG generation
FASTEN £

Package Release

Filtered
Package

Release /

Package Release

D) E——

Forge Codefeedr/ Filtering

New Package
@ e

Mmaven

Custom Scraper E'V Inspect
Message
Call Graph Call Graph e /
Sl /N Package
Release

CG Stitching FASTEN DB CG Generator



Universal function identifiers

How to uniquely reference a function in a global namespacen. I

scheme fasten://

forge /mvn

artifact /org.slfdj.slfdj-api

version /1.2.3

namespace /org.slfdj.helpers

function /BasicMarkerFactory.getDetachedMarker

argument(s) (%2Fjava. lang%2FString)

return type %2Forg.slf4j%2FMarker



Universal functon identifiers

Fﬁ’:'JTEN f¢
How to uniquely reference a function in a global namespace*

scheme fasten://
forge /mvn Generic format +

: : : : Java
artifact /org.slfdj.slfdj-api Python

C

version /1.2.3
namespace /org.slfdj.helpers
function /BasicMarkerFactory.getDetachedMarker

argument(s) (%2Fjava. lang%2FString)

return type %2Forg.slf4j%2FMarker




Call graph transport
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ENErSion /30007
Nehae g
"/name.space/A": {
"methods": {
"Q": "/name.space/A.A()%2Fjava. lang%2FVoidType",
"1": "/name.space/A.g(%2Fjava. lang%2FString)%2Fjava. lang%2FInteger"
}
"superInterfaces": [ "/java.lang/Serializable" 1,
"sourceFile": "filename.java",
“superClasses & ="/ avas Lang /Object® ]
¥
}l
Ygraphtt s
"internalCalls": [

EE0n 1]
I
"externalCalls": [
[ "1", "///their.package/TheirClass.method()Response", { "invokeinterface": "1" } ]

]
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Language-dependent
call graph generation

“ Java: Based on tools from the OPAL project (stg-tud / opal)
* Python: New static analysis tool: PyCG (Submitted ICSE 2020)

* C: CScout for static call graphs; gprof, callgrind for dynamic calls

S,
<.

Java




Current CG results

‘ Results
Language / Total

Ecosystem Packages Packages Nodes Edges Success

Rate

C / Debian 7.380 (757 531 491.721 579.253 70%
Buster analyzed) *
Java / Maven | 2.7M artifacts 2.4M ~5B+ ~56B+ 89.13%
Python / PyPIl | ~740 K ~520K ~211M ~310M 70%

m * Technical issues prohibited us from downloading the rest of the packages.
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How to scale call graph processing to 1026 package versions?
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Call graph stitchin
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How to scale call graph processing to 1026 package versions?

* Idea: Decouple package resolution from call graph
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Call graph stitchin
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How to scale call graph processing to 1026 package versions?

* Idea: Decouple package resolution from call graph
generation

* Build and store call graphs per package version, incl.:

A
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/7 z 3 :
* unresolved calls U C
running stitch hemming stitch
54
= ')‘ .
basting stitch catch stitch
&%}
N _/\
slip stitch %ck)stitch
B o
L

overcast stitch invisible stitch



Call graph stitchin
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How to scale call graph processing to 1026 package versions?

* Idea: Decouple package resolution from call graph
generation

* Build and store call graphs per package version, incl.:

L3 S
* unresolved calls U ¢ =
#g\»’\ .
“ class hierarchies (Java, Python) =g - =
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Call graph stitchin
grap 8 o
How to scale call graph processing to 1026 package versions?

* Idea: Decouple package resolution from call graph
generation

* Build and store call graphs per package version, incl.:

A
LES B
* unresolved calls — U ¢ SO0
L ez
“ class hierarchies (Java, Python) =7 5
% . s &%} —‘-“
* Call graph stitching: Resolve unresolved — = "(J =
calls given a dependency tree B &)
W @

FASTEN.T"§



The database schema
FASTEN

dependencies
- 1 package_version_id |bigint . y
. - edges

——1 dependency_id bigint g
architecture text id bigint — target_id bigint
dependency type |text package_version_id |bigint receivers receiver(]
altermative_group | bigint namespace text metadata isonb
(metadata jsonb created_at Umestamp callables
r metadata jsonb . —
packages id bigint

H id bigint module_id bigint
package_name |text binary_modules fasten_uri text
forge text id bigint . is_internal_call |boolean
project_name |text package_version_id |bigint created_at timestamp
repository text name text line_start integer
\created at timestamp created_at timestamp line_end integer
, metadata jsonb metadata jsonb
package_versions . J

— - id bigint module_contents -

\—< package_id bigint < module_id bigint files

Cg_generator  |text r file_id bigint — id bigint
virtual_implementations 1 L -
version text A< package_version_id | bigint
. virtual_package_version_id | bigint
architecture text P ge_ - 9 J ( e T GRS path text
created_at timestamp \package_versmn_ld bigint o _ du _'d o checksum bytea
4 binary_module nt .
metadata jsonb nany_ e 9! created_at timestamp
file_id bigint > .
L - 9 metadata jsonb
N

FASTEN £




Examples of queries:

largest packages (# of functions) FASTEN T |

select p.package_name, pv.version, count(x)

from package_versions pv
join packages p on pv.package_id = p.id
join modules m on m.package_version_id = pv.id
join callables ¢ on c.module_id = m.id

group by p.package_name, pv.version

order by count(x) desc

limit 10;

package_name version | count

|
org.bouncycastle:bcprov-jdkl5on | 1.54 | 16912
com.google.guava:guava | 20.0 | 13956
xalan:xalan | 2.7.2 | 13058
org.apache.pdfbox:pdfbox | 2.0.8 | 6727
external_callables_library | 9:0.1 | 5457
org.apache.santuario:xmlsec | 2.0.9 | 4783
org.apache.santuario:xmlsec | 2.0.8 | 4780
org.apache.commons:commons—collections4 | 4.1 | 4607
org.apache.commons: commons—1lang3 | 3.6 | 3432
org.apache.httpcomponents:httpclient | 4.5.3 | 3024

(10 rows)



Examples of queries:

Packages depending on vulnerable package

SELECT package_version_id, p.package_name, pv.version

FROM dependencies d

JOIN package_versions pv
JOIN packages p ON p.id = pv.package_id
WHERE d.dependency_id =

(SELECT id

FROM packages

ON pv.id = d.package_version_id

WHERE package_name = 'com.google.guava:guava')
AND '20.0' = ANY(d.version_range);

package_version_id | package_name | version
16 | org.digidoc4j.dss:dss-utils—google-guava | 5.0.d4j.5
41 | org.digidoc4j.dss:dss-utils—google—guava | 5.0.d4j.4
81 | org.digidoc4j:digidoc4j | 1.0.8.beta.2
107 | org.digidoc4j:digidoc4j | 1.0.7.beta.2
119 | org.digidoc4j:digidoc4]j | 1.0.7.2
133 | org.digidoc4j:digidoc4]j | 1.0.7.1
156 | org.digidoc4j.dss:dss-utils—-google-guava | 5.1.d4j.5
142 | org.digidoc4j.dss:dss-utils—google-guava | 5.0.d4j.3

FASTEN [
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Graph analytics

(results shown refer to Java CG’s) FRSTEN [

* Graph stored using WebGraph (UMIL)
* For 1.1M graphs (2.3B nodes, 18B edges):

“ 3.6 bits per edge, plus global ID storage for each node
(9.0 bits per edge overall)

+ DB size: 38GB — we can fit the whole of Maven in
RAM

FASTEN.T"§



Deflation

100%

50%

25%

10%

Graph storage

Compression results

FASTEN £

10 100 1000 10000

Graph size

100000 1x10°



Vulnerability Plugin

VulnerabilityPlugin

ExtraParser
MSR2019

MSR2020
@) Safety DB

.

GitHub Advisory Database |

ParserManager

PatchFarmer

GHTorrent

~

+

C)cicari

Vulnerability :J

Object

—

NitriteController

L%

_/

securi

* Gathering vulnerability information (at

package and callable level)

* Anormalized Vulnerability Object

definition is injected in the metadata
database

<+ Normalization is needed to smooth out

the different sources of information

* The plugin continuously pulls updates

for new information and keeps storing
the results



Analysis plug-ins

FASTEN £

RAPID: Risk Analysis and Propagation Inspection for Security
and Maintainability risks

“ On the server side (to enrich the metadata DB):

* Plugin for code maintainability analysis:
V1 deployed, processed 126K Maven coordinates to date

* Plugin for security vulnerability propagation

% On the client side:

* Auser application to model and present risks

FASTEN.T"§
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License and Compliance anal

* QMSTR Plugin consists of 3 steps:

1. Use the CG generator to gather information about all
the generated artifacts that will be distributed
together with the source code

2. Execution of static analysis tools that augment the
build graph with license and compliance metadata

3. Generation of a report with package's relevant license
and authorship metadata that is finally distributed



Client-side highlights



REST API

FASTEN £

* Implementation of endpoints to expose canned queries
from the metadata database

+ In development:
* Full DB entity support

* Custom extension points

FASTEN.T"§



Use cases

* Endocode

+ Endocode developed a license-compliance solution, called Quartermaster

* They are integrating FASTEN to improve the precision of their compliance offering
+ SIG

+ Integration of FASTEN in BetterCodeHub, their GitHub-connected code quality
monitoring product

+ XWiki
* Risk validation in the dependencies at Maven build time
+ Risk validation in the installed extensions of an XWiki instance
* Filter out available compatible extensions for an XWiki instance

* Discoverability of XWiki components in available extensions

FASTEN.T"§






End 2020 @

Q1 2021

Q2 2021

Q3 2021

Q4 2021

Q12022 @

The future ,_

REST API, first full version of knowledge base, CG enrichment,
build graph integration, first public announcement

Impact analysis, integration with MVN / PyPI; first external user

Industrial use cases integrated; first external adoption

Licensing and security fully integrated,;
Data-driven API evolution

Project finished; external integrations

FASTEN 2?



Network analysis will be the next
step for the future of
software development



Network analysis will be the next
step for the future of
software development

1G «{m

FASTEN YOUR SEAT BELTS.




beer

opeﬁource 8000+ hackers
lightning :alk‘s" 544 lectures

Paolo Boldi
Universita degli Studi di

Que Sti()ﬂS? Milano

Italy
paolo.boldi@unimi.it




