- i | ILI LIJE]

VB AWEY GRS AR R S R e

||||||

Software Ecosystems as | Paclo Boldi
.~ Universita degli Studi di
Networks v

Advances on the FASTEN project '

The FASTEN Project o

* Fine-Grained Analysis of Sof Tware Ecosystems as Networks

+ Part of the EU H2020-ICT-2018-2020 Program

“ Consortium

TORUA;

AP D)
BN \ENDO

4 %‘@m g’:
TUDeIft 8ie 4 CODE

.l

XWIKI

BEST WAY TO ORGA

Why FASTEN?

Sharing through software libra

aAries
FASTEN

Sharing through software libr

* Internet made the dream of collaborative development a
reality, by means of libraries that are made available:

Sharing through software libraries,

* Internet made the dream of collaborative development a
reality, by means of libraries that are made available:

“ on repositories (SourceForge, GitHub, BitBucket, ...)

Sharing through software libraries,

* Internet made the dream of collaborative development a
reality, by means of libraries that are made available:

“ on repositories (SourceForge, GitHub, BitBucket, ...)

* or forges (Maven, PyPi, CPAN, ...)

Industrial revolution

at the harbour of software development

Industrial revolution
at the harbour of software development m

All trades, arts, and handiworks have gained by
division of labour, namely, when, instead of one
man doing everything, each confines himself to a
certain kind of work distinct from others in the
treatment it requires, so as to be able to perform it
with greater facility and in the greatest
perfection. Where the different kinds of work are
not distinguished and divided, where everyone is
a jack-of-all-trades, there manufactures remain
still in the greatest barbarism.

Immanuel Kant
Groundwork for the Metaphysics
of Morals (1785)

Dependency graphs

Dependency graphs

ions and their

+ Library+vers

39
VS
= 2
S al
=
P
@)
e =
kel
g
g Q.
QoD
@i
Qi
TN

Dependency graphs

“ Library-+versions and their
dependencies form (complex,
huge) dependency networks

“ Version constraints make these
networks more complicated
than simple graphs

Dependency graphs

“ Library-+versions and their
dependencies form (complex,
huge) dependency networks

“ Version constraints make these i -
networks more complicated
than simple graphs

* Package manager will finally
determine which version is

chosen for each library

T'he dependency heaven

T'he dependency heaven

* Relying on an
ecosystem of easy-to-
use well written
libraries made the
dream of code reuse a
reality

The dependency hell

T'he dependency hell

* A bug or security
breach or legal issue
concerning one single
plece. ..

:
. - ¥ . h
I’
al %
N
N\ '-
-
— “ <
/ . .
— t -
‘__0 -" . . 2
. : : a1 I
n A ‘
,.. 'y V “
- N -
- A - &] J
«Y ’
L ' .
4 B P 3
p ha

+ ...can make the whole
tower fall!

n ndency nigh
Recent dependency nightmares)

Recent dependency nightmares)

+* The leftpad incident (2016): millions of websites
aftected

Recent dependency mghtmarﬁ%%m

+* The leftpad incident (2016): millions of websites
aftected

* The Equifax breach (2017): costed 4B$

F.cosystems e

Fcosystems i

* Ecosystems grow at mind boggling speed

Fcosystems
FASTEN £

* Ecosystems grow at mind boggling speed

“ JavaScript projects have an average of 80 (Zimmerman et al.,
2019) transitive dependencies

Fcosystems
FASTEN £

* Ecosystems grow at mind boggling speed

“ JavaScript projects have an average of 80 (Zimmerman et al.,
2019) transitive dependencies

* 50% of dependencies change in a 6-month time (Hejderup et al.,
2019)

Ecosvstems
: FASTEN ©

* Ecosystems grow at mind boggling speed

“ JavaScript projects have an average of 80 (Zimmerman et al.,
2019) transitive dependencies

* 50% of dependencies change in a 6-month time (Hejderup et al.,
2019)

* And deteriorate almost as rapidly

Ecosvstems
: FASTEN ©

* Ecosystems grow at mind boggling speed

“ JavaScript projects have an average of 80 (Zimmerman et al.,
2019) transitive dependencies

* 50% of dependencies change in a 6-month time (Hejderup et al.,
2019)

* And deteriorate almost as rapidly

+ Existence of package bottlenecks (the removal on one single
package can bring down almost 40% of the system)

Ecosvstems
: FASTEN ©

* Ecosystems grow at mind boggling speed

“ JavaScript projects have an average of 80 (Zimmerman et al.,
2019) transitive dependencies

* 50% of dependencies change in a 6-month time (Hejderup et al.,
2019)

* And deteriorate almost as rapidly

+ Existence of package bottlenecks (the removal on one single
package can bring down almost 40% of the system)

“ Rich get richer: few maintainers dominate most packages

Epidemics in dependency gra%%gm

UbAvasLO)

[Ubavas&O} (UbQVHSL5

Ub&va525)

r.

Epidemics in dependency graphs

Lib A, vers 1 .O)

{Lib C, vers 1.5

Lib B, vers 2.5

A vulnerability alert
is issued
about Lib D, vers 3.0

Epidemics in dependency gra%%gm

A vulnerability alert

o is issued
i about Lib D, vers 3.0

.........

GitHub security alerts

Code Issues 0 Pull requests 0 I'l Projects 0 Wiki il Insights i Settings
Pulse Alerts Dismiss all
Contributors
Traffic A 10pen v 0 Closed Sort ~
Commits A org.springframework:spring-core moderate severity

opened 3 minutes ago by GitHub « pom.xml
Code frequency

Dependency graph GitHub tracks known security vulnerabilities in some dependency manifest files. Learn more about alerts,
Alerts

Network

Forks

But is this enough?

- 7
[sn’t this kind of ool enough?

° . . C)
Isn’t this kind of tool enough

“ In theory. But in practice:

° . . C)
Isn’t this kind of tool enough

“ In theory. But in practice:

* Developers don’t update

° . . 6?
Isn’t this kind of tool enough

“ In theory. But in practice:
* Developers don’t update

* — Vulnerabilities proliferate

° . . 6?
Isn’t this kind of tool enough

“ In theory. But in practice:
* Developers don’t update

* — Vulnerabilities proliferate

+ Why?

- 2
Isn’t this kind of tool enough

“ In theory. But in practice:

* Developers don’t update

* — Vulnerabilities proliferate
+ Why?

“ QOur tools are not sharp enough for what we want

Examples of what people wanl

Developers Maintainers

Does this outdated dependency How do I update without breaking
really break my code? too many of my important clients?

How do I spot instances of my
code being distributed without
permission?

Am I violating anyone’s

copyright?

Violations

Epidemics in dependency gra%%gm

UbAvasLO)

[Ubavas&O} (UbQVHSL5

Ub&va525)

Epidemics in dependency graphs .

& =)
Gag] e A.fo
- —\ A f2
“ 2\
----------------------- v
"""""""""""" 4 A3
B ¢ C.f1 :
>
D.f2
N
Df3 B e WadeorSilvsird et Cf2 2 Bf1
o T e Bf2
€ 5 Y

B.f3

D.f1

D.f2

.
s
.
.

raa,
.....
]
L]
L]
2

)
o’
.
.
.

C.f1

C.f2

A vulnerability alert

is issued
about Lib D, vers 3.0,
function 13

Epidemics in dependency graphs

A.f0

Af2

Y

A.f3

~\

B.f1

B.f2

B.f3

r.

—

Epidemics in dependency graphs

& =3
o T A g fo
r — Af2
\ 4
D.f1 £elS
.
.

A vulnerability alert
is issued

about Lib D, vers 3.0,
function f3

Epidemics in dependency graphs

B A 4 £ g : B u

Much more informative!

w

A vulnerability alert
is issued

about Lib D, vers 3.0,
function f3

[2
......... A fO
Af2

7

~

4)

'.

Epidemics in dependency graphs

A vulnerability alert

is issued
about Lib D, vers 3.0,
function £3

=
A.f0
Af2
\
Af3
J
.
B.f1

'.

’.

Epidemics in dependency graphs

. , “

void the cry wolf effect!§ A.fO
e
=

A vulnerability alert

is issued
about Lib D, vers 3.0,
function £3

EXamp1€ : FHSTEN C

Examples
FASTEN £

+ Fully precise change impact analysis: “How many libraries
are affected if [remove/modify a certain method/interface?”

Examples a

+ Fully precise change impact analysis: “How many libraries
are affected if [remove/modify a certain method/interface?”

“ Fully precise license compliance: “Is my library compliant

with the licenses of the libraries that I depend from (directly or
indirectly)? (e.g., am I linking any GPL code?)”

Examples a

+ Fully precise change impact analysis: “How many libraries
are affected if [remove/modify a certain method/interface?”

“ Fully precise license compliance: “Is my library compliant

with the licenses of the libraries that I depend from (directly or
indirectly)? (e.g., am I linking any GPL code?)”

“ Fully precise risk profiling: “Does this vulnerability affect my

code?”

Examples a

+ Fully precise change impact analysis: “How many libraries
are affected if [remove/modify a certain method/interface?”

* Fully precise license compliance: “Is my library compliant

with the licenses of the libraries that I depend from (directly or
indirectly)? (e.g., am I linking any GPL code?)”

“ Fully precise risk profiling: “Does this vulnerability affect my

code?”

* Centrality analysis: “What methods/functions are more central
within a given ecosystem? are there bottlenecks? critical points?”

The FASTEN toolchain

The FASTEN toolchain

IIIII

FASTEN £

The FASTEN toolchain s

Project information 1 ’ \ublh
(A_A

Security ol \// f— publ ish

alerts "J \-/) Data stream

Package
’ Index '» >
e
Repositories publish
™

The FASTEN toolchain s

Project information 1 ’ \ubhsh
Security C \ 4 A N publ ish
> ,
alerts g Data stream

aaaaaaa

‘ ? B
Repositories Ui} publish
Ma ven FASTEN

server

The FASTEN toolchain

Project information

Security
alerts

Repositories

@ /.

fgthon” @ RubyGems

publish

publish

publish

Data stream

FASTEN
server

Call-graph

construction

FASTEN [

Project information 1 ’

Security
alerts

Repositories

The FASTEN toolchain

@ /.

publish

fgthon” @ RubyGems

publish

Data stream

publish

FASTEN
server

Call-graph

construction

Storage
layer

FASTEN [

Project information 1 ’

Security
alerts

Repositories

The FASTEN toolchain

@ /.

publish

fgthon” @ RubyGems

publish

Data stream

publish

FASTEN
server

Call-graph

construction

Storage
layer

Analysis
layer

FASTEN [

The FASTEN toolchain

Project information

Security
alerts

Repositories

@ oy

fgthon” @ RubyGems

publish

publish

publish

Data stream

FASTEN
server

Call-graph

construction

Storage
layer

Analysis
layer

FASTEN [

The FASTEN toolchain

Project information

Security
alerts

Repositories

@ oy

fgthon” @ RubyGems

publish

publish

publish

Data stream

FASTEN
server

Call-graph

construction

Storage
layer

Analysis
layer

FASTEN [

The FASTEN toolchain

Project information

Security
alerts

Repositories

@ oy

fgthon” @ RubyGems

publish

publish

publish

Data stream

FASTEN
server

Call-graph

construction

Storage
layer

Analysis
layer

FASTEN [

Continuous
integration server

_—

continuum
‘_/ B

¢, Bamboo
&

¢ Jenkins

The FASTEN toolchain s

Continuous
integration server

_—
continuum
. . . u ‘
Project information publish
Call-graph {; Bamboo
construction)
? Jenkins

publish

alerts Data stream

Security @ (:é?\ /'~

Storage

layer ay

aaaaaaa

gthon” @ RubyGems
f? indox® =
Repositories publish

Analysis

Ma verr FASTEN i

server

The FASTEN toolchain

Project information

Security
alerts

Repositories

@ oy

fgthon” @ RubyGems

publish

publish

publish

Data stream

FASTEN
server

Call-graph

construction

Storage
layer

Analysis
layer

FASTEN [

Continuous
integration server

_—

continuum
‘_/ B

¢, Bamboo
&

¢ Jenkins

-

Developer

Preliminary results

Server-side highlights

=

Dataflow example: GG generation
FASTEN £

Package Release

Filtered
Package

Release /

Package Release

D) E——

Forge Codefeedr/ Filtering

New Package
@ e

Mmaven

Custom Scraper E'V Inspect
Message
Call Graph Call Graph e /
Sl /N Package
Release

CG Stitching FASTEN DB CG Generator

Universal function identifiers

How to uniquely reference a function in a global namespacen. I

scheme fasten://

forge /mvn

artifact /org.slfdj.slfdj-api

version /1.2.3

namespace /org.slfdj.helpers

function /BasicMarkerFactory.getDetachedMarker

argument(s) (%2Fjava. lang%2FString)

return type %2Forg.slf4j%2FMarker

Universal functon identifiers

Fﬁ’:'JTEN f¢
How to uniquely reference a function in a global namespace*

scheme fasten://
forge /mvn Generic format +

: : : : Java
artifact /org.slfdj.slfdj-api Python

C

version /1.2.3
namespace /org.slfdj.helpers
function /BasicMarkerFactory.getDetachedMarker

argument(s) (%2Fjava. lang%2FString)

return type %2Forg.slf4j%2FMarker

Call graph transport

FASTEN £

{
Eprodlcts sy =fo0s
SO gess =My
rdepsettis-]
[
T pEeductlrstat=editn gl Vil 2 iconstraintsy & - Prlde 2 A Bl =9 3= At
L nreducEizabhe SV o rgel = tmvnts constraints i i B 22 0R A o0
]
]l
ENErSion /30007
Nehae g
"/name.space/A": {
"methods": {
"Q": "/name.space/A.A()%2Fjava. lang%2FVoidType",
"1": "/name.space/A.g(%2Fjava. lang%2FString)%2Fjava. lang%2FInteger"
}
"superInterfaces": ["/java.lang/Serializable" 1,
"sourceFile": "filename.java",
“superClasses & ="/ avas Lang /Object®]
¥
}l
Ygraphtt s
"internalCalls": [

EE0n 1]
I
"externalCalls": [
["1", "///their.package/TheirClass.method()Response", { "invokeinterface": "1" }]

]

FASTEN SR

iy

Call graph transport

{
e R Generic format +
orge": "mvn",
"depset": [Java
[_ Python
e nEdductiraita=ediiorgetie=tnviys Zlconstraintsy f - P 2 s 5l =D 3= 2
b EOdlicE s e o P et N s s consEratnts s P 22 0 A A ok C
]
]l
ENErSion /30007
Yeha'ts |
"/name.space/A": {
"methods": {
"Q": "/name.space/A.A()%2Fjava.lang%2FVoidType",
"1": "/name.space/A.g(%2Fjava. lang%2FString)%2Fjava. lang%2FInteger"
}
"superInterfaces": ["/java.lang/Serializable" 1,
"sourceFile": "filename.java",
“superClasses & ="/ avas Lang /Object®]
¥
}l
Ygraphtt s
"internalCalls": [

EE0n 1]
I
"externalCalls": [
["1", "///their.package/TheirClass.method()Response", { "invokeinterface": "1" }]

]

FASTEN SR

iy

Language-dependent

call graph generation FRSTEN

s

FARSTEN £

Language-dependent
call graph generation

“ Java: Based on tools from the OPAL project (stg-tud / opal)
* Python: New static analysis tool: PyCG (Submitted ICSE 2020)

* C: CScout for static call graphs; gprof, callgrind for dynamic calls

S,
<.

Java

Current CG results

‘ Results
Language / Total

Ecosystem Packages Packages Nodes Edges Success

Rate

C / Debian 7.380 (757 531 491.721 579.253 70%
Buster analyzed) *
Java / Maven | 2.7M artifacts 2.4M ~5B+ ~56B+ 89.13%
Python / PyPIl | ~740 K ~520K ~211M ~310M 70%

m * Technical issues prohibited us from downloading the rest of the packages.

Call graph sttching s,

How to scale call graph processing to 1026 package versions?

U ¢
running stitch hemming stitch
N\ _)\
) 7
basting stitch catch stitch
\ QA

iy
L
o
: C
y =

Call graph stitchin
grap 8 o
How to scale call graph processing to 1026 package versions?

* Idea: Decouple package resolution from call graph
generation

iy
L1
o
&
~
o
n

Call graph stitchin
grap 8 o
How to scale call graph processing to 1026 package versions?

* Idea: Decouple package resolution from call graph
generation

* Build and store call graphs per package version, incl.:

iy
L1
¥
o
&
~
WC
n

Call graph stitchin
grap 8 o
How to scale call graph processing to 1026 package versions?

* Idea: Decouple package resolution from call graph
generation

* Build and store call graphs per package version, incl.:

A
AZﬁ N\
/7 z 3 :
* unresolved calls U C
running stitch hemming stitch
54
= ')‘ .
basting stitch catch stitch
&%}
N _/\
slip stitch %ck)stitch
B o
L

overcast stitch invisible stitch

Call graph stitchin
grap 8 o
How to scale call graph processing to 1026 package versions?

* Idea: Decouple package resolution from call graph
generation

* Build and store call graphs per package version, incl.:

L3 S
* unresolved calls U ¢ =
#g\»’\ .
“ class hierarchies (Java, Python) =g - =
S L
slip stitclf__f bLack)smch =
B)
®

overcast stitch invisible stitch

Call graph stitchin
grap 8 o
How to scale call graph processing to 1026 package versions?

* Idea: Decouple package resolution from call graph
generation

* Build and store call graphs per package version, incl.:

A
LES B
* unresolved calls — U ¢ SO0
L ez
“ class hierarchies (Java, Python) =7 5
% . s &%} —‘-“
* Call graph stitching: Resolve unresolved — = "(J =
calls given a dependency tree B &)
W @

FASTEN.T"§

The database schema
FASTEN

dependencies
- 1 package_version_id |bigint . y
. - edges

——1 dependency_id bigint g
architecture text id bigint — target_id bigint
dependency type |text package_version_id |bigint receivers receiver(]
altermative_group | bigint namespace text metadata isonb
(metadata jsonb created_at Umestamp callables
r metadata jsonb . —
packages id bigint

H id bigint module_id bigint
package_name |text binary_modules fasten_uri text
forge text id bigint . is_internal_call |boolean
project_name |text package_version_id |bigint created_at timestamp
repository text name text line_start integer
\created at timestamp created_at timestamp line_end integer
, metadata jsonb metadata jsonb
package_versions . J

— - id bigint module_contents -

\—< package_id bigint < module_id bigint files

Cg_generator |text r file_id bigint — id bigint
virtual_implementations 1 L -
version text A< package_version_id | bigint
. virtual_package_version_id | bigint
architecture text P ge_ - 9 J (e T GRS path text
created_at timestamp \package_versmn_ld bigint o _ du _'d o checksum bytea
4 binary_module nt .
metadata jsonb nany_ e 9! created_at timestamp
file_id bigint > .
L - 9 metadata jsonb
N

FASTEN £

Examples of queries:

largest packages (# of functions) FASTEN T |

select p.package_name, pv.version, count(x)

from package_versions pv
join packages p on pv.package_id = p.id
join modules m on m.package_version_id = pv.id
join callables ¢ on c.module_id = m.id

group by p.package_name, pv.version

order by count(x) desc

limit 10;

package_name version | count

|
org.bouncycastle:bcprov-jdkl5on | 1.54 | 16912
com.google.guava:guava | 20.0 | 13956
xalan:xalan | 2.7.2 | 13058
org.apache.pdfbox:pdfbox | 2.0.8 | 6727
external_callables_library | 9:0.1 | 5457
org.apache.santuario:xmlsec | 2.0.9 | 4783
org.apache.santuario:xmlsec | 2.0.8 | 4780
org.apache.commons:commons—collections4 | 4.1 | 4607
org.apache.commons: commons—1lang3 | 3.6 | 3432
org.apache.httpcomponents:httpclient | 4.5.3 | 3024

(10 rows)

Examples of queries:

Packages depending on vulnerable package

SELECT package_version_id, p.package_name, pv.version

FROM dependencies d

JOIN package_versions pv
JOIN packages p ON p.id = pv.package_id
WHERE d.dependency_id =

(SELECT id

FROM packages

ON pv.id = d.package_version_id

WHERE package_name = 'com.google.guava:guava')
AND '20.0' = ANY(d.version_range);

package_version_id | package_name | version
16 | org.digidoc4j.dss:dss-utils—google-guava | 5.0.d4j.5
41 | org.digidoc4j.dss:dss-utils—google—guava | 5.0.d4j.4
81 | org.digidoc4j:digidoc4j | 1.0.8.beta.2
107 | org.digidoc4j:digidoc4j | 1.0.7.beta.2
119 | org.digidoc4j:digidoc4]j | 1.0.7.2
133 | org.digidoc4j:digidoc4]j | 1.0.7.1
156 | org.digidoc4j.dss:dss-utils—-google-guava | 5.1.d4j.5
142 | org.digidoc4j.dss:dss-utils—google-guava | 5.0.d4j.3

FASTEN [

Graph analytics
(results shown refer to Java CG’s)

Graph analytics
(results shown refer to Java CG’s)

* Graph stored using WebGraph (UMIL)

Graph analytics

(results shown refer to Java CG’s) FASTEN

* Graph stored using WebGraph (UMIL)
* For 1.1M graphs (2.3B nodes, 18B edges):

Graph analytics

(results shown refer to Java CG’s) FASTEN

* Graph stored using WebGraph (UMIL)
* For 1.1M graphs (2.3B nodes, 18B edges):

* 3.6 bits per edge, plus global ID storage for each node
(9.0 bits per edge overall)

Graph analytics

(results shown refer to Java CG’s) FRSTEN [

* Graph stored using WebGraph (UMIL)
* For 1.1M graphs (2.3B nodes, 18B edges):

“ 3.6 bits per edge, plus global ID storage for each node
(9.0 bits per edge overall)

+ DB size: 38GB — we can fit the whole of Maven in
RAM

FASTEN.T"§

Deflation

100%

50%

25%

10%

Graph storage

Compression results

FASTEN £

10 100 1000 10000

Graph size

100000 1x10°

Vulnerability Plugin

VulnerabilityPlugin

ExtraParser
MSR2019

MSR2020
@) Safety DB

.

GitHub Advisory Database |

ParserManager

PatchFarmer

GHTorrent

~

+

C)cicari

Vulnerability :J

Object

—

NitriteController

L%

_/

securi

* Gathering vulnerability information (at

package and callable level)

* Anormalized Vulnerability Object

definition is injected in the metadata
database

<+ Normalization is needed to smooth out

the different sources of information

* The plugin continuously pulls updates

for new information and keeps storing
the results

Analysis plug-ins

FASTEN £

RAPID: Risk Analysis and Propagation Inspection for Security
and Maintainability risks

“ On the server side (to enrich the metadata DB):

* Plugin for code maintainability analysis:
V1 deployed, processed 126K Maven coordinates to date

* Plugin for security vulnerability propagation

% On the client side:

* Auser application to model and present risks

FASTEN.T"§

V/
/)O

75
o)
O
)
X

FASTEN

License and Compliance anal

* QMSTR Plugin consists of 3 steps:

1. Use the CG generator to gather information about all
the generated artifacts that will be distributed
together with the source code

2. Execution of static analysis tools that augment the
build graph with license and compliance metadata

3. Generation of a report with package's relevant license
and authorship metadata that is finally distributed

Client-side highlights

REST API

FASTEN £

* Implementation of endpoints to expose canned queries
from the metadata database

+ In development:
* Full DB entity support

* Custom extension points

FASTEN.T"§

Use cases

* Endocode

+ Endocode developed a license-compliance solution, called Quartermaster

* They are integrating FASTEN to improve the precision of their compliance offering
+ SIG

+ Integration of FASTEN in BetterCodeHub, their GitHub-connected code quality
monitoring product

+ XWiki
* Risk validation in the dependencies at Maven build time
+ Risk validation in the installed extensions of an XWiki instance
* Filter out available compatible extensions for an XWiki instance

* Discoverability of XWiki components in available extensions

FASTEN.T"§

End 2020 @

Q1 2021

Q2 2021

Q3 2021

Q4 2021

Q12022 @

The future ,_

REST API, first full version of knowledge base, CG enrichment,
build graph integration, first public announcement

Impact analysis, integration with MVN / PyPI; first external user

Industrial use cases integrated; first external adoption

Licensing and security fully integrated,;
Data-driven API evolution

Project finished; external integrations

FASTEN 2?

Network analysis will be the next
step for the future of
software development

Network analysis will be the next
step for the future of
software development

1G «{m

FASTEN YOUR SEAT BELTS.

beer

opeﬁource 8000+ hackers
lightning :alk‘s" 544 lectures

Paolo Boldi
Universita degli Studi di

Que Sti()ﬂS? Milano

Italy
paolo.boldi@unimi.it

