
Semantically Meaningful S-expression Diff

Arun Isaac

Declarative and Minimalistic Computing Devroom, FOSDEM 2021

February 6 & 7, 2021

Lisp code is data
Trivial to parse and manipulate

(def ine (f a c t o r i a l n)
(i f (z e r o ? n)

1
(∗ n (f a c t o r i a l (− n 1)))))

The source is almost literally the abstract syntax tree (AST)

Automated source manipulation tools can be written easily

sdiff—a diff program for S-expressions.

Lisp code is data
Trivial to parse and manipulate

(def ine (f a c t o r i a l n)
(i f (z e r o ? n)

1
(∗ n (f a c t o r i a l (− n 1)))))

The source is almost literally the abstract syntax tree (AST)

Automated source manipulation tools can be written easily

sdiff—a diff program for S-expressions.

Lisp code is data
Trivial to parse and manipulate

(def ine (f a c t o r i a l n)
(i f (z e r o ? n)

1
(∗ n (f a c t o r i a l (− n 1)))))

The source is almost literally the abstract syntax tree (AST)

Automated source manipulation tools can be written easily

sdiff—a diff program for S-expressions.

Lisp code is data
Trivial to parse and manipulate

(def ine (f a c t o r i a l n)
(i f (z e r o ? n)

1
(∗ n (f a c t o r i a l (− n 1)))))

The source is almost literally the abstract syntax tree (AST)

Automated source manipulation tools can be written easily

sdiff—a diff program for S-expressions.

Lisp code is data
Trivial to parse and manipulate

(def ine (f a c t o r i a l n)
(i f (z e r o ? n)

1
(∗ n (f a c t o r i a l (− n 1)))))

The source is almost literally the abstract syntax tree (AST)

Automated source manipulation tools can be written easily

sdiff—a diff program for S-expressions.

The Unix world of lines
Files are a flat list of lines

Thanks to Unix legacy, most shell utilities (sed, grep, awk,
cut, etc.) operate on lines.

For example, GNU Diff outputs the difference as a list of lines
to be inserted and deleted.

@@ -7,5 +7,5 @@

((? string?)

(updated-url source-uri))

((source-uri ...)

-(find updated-url source-uri))))))

+(any updated-url source-uri))))))

(_ #f))

The Unix world of lines
Files are a flat list of lines

Thanks to Unix legacy, most shell utilities (sed, grep, awk,
cut, etc.) operate on lines.

For example, GNU Diff outputs the difference as a list of lines
to be inserted and deleted.

@@ -7,5 +7,5 @@

((? string?)

(updated-url source-uri))

((source-uri ...)

-(find updated-url source-uri))))))

+(any updated-url source-uri))))))

(_ #f))

The Unix world of lines
Files are a flat list of lines

Thanks to Unix legacy, most shell utilities (sed, grep, awk,
cut, etc.) operate on lines.

For example, GNU Diff outputs the difference as a list of lines
to be inserted and deleted.

@@ -7,5 +7,5 @@

((? string?)

(updated-url source-uri))

((source-uri ...)

-(find updated-url source-uri))))))

+(any updated-url source-uri))))))

(_ #f))

The Unix world of lines
Files are a flat list of lines

Thanks to Unix legacy, most shell utilities (sed, grep, awk,
cut, etc.) operate on lines.

For example, GNU Diff outputs the difference as a list of lines
to be inserted and deleted.

@@ -7,5 +7,5 @@

((? string?)

(updated-url source-uri))

((source-uri ...)

-(find updated-url source-uri))))))

+(any updated-url source-uri))))))

(_ #f))

Lisp projects use diff too
Impedance mismatch between S-expressions and line-oriented diff

Can you spot the actual change in the following diff?

< (/ (+ (- b)

< (sqrt (- (* expt b 2)

< (* 4 a c))))

< (* 2 a))

> (let ((b 1))

> (/ (+ (- b)

> (sqrt (- (* expt b 2)

> (* 4 a c))))

> (* 2 a)))

Lisp projects use diff too
Impedance mismatch between S-expressions and line-oriented diff

Can you spot the actual change in the following diff?

< (/ (+ (- b)

< (sqrt (- (* expt b 2)

< (* 4 a c))))

< (* 2 a))

> (let ((b 1))

> (/ (+ (- b)

> (sqrt (- (* expt b 2)

> (* 4 a c))))

> (* 2 a)))

We need a tree diff for S-expressions
Not a line diff

We need a tree diff.

(let ((b 1))

(/ (+ (- b)

(sqrt (- (* expt b 2)

(* 4 a c))))

(* 2 a)))

Tree diff
A surprisingly difficult problem

Extracting the author’s intent from the old and new files is
hard, and probably requires general AI.

Approximate by posing it as an optimization problem.

For unordered trees, the problem is NP-hard.

We only deal with ordered trees.

sdiff implements the MH-DIFF (Meaningful Hierarchical
Diff) algorithm.

Meaningful change detection in structured data. Sudarshan
Chawathe, Hector Garcia-Molina, 1997. ACM SIGMOD Record,
26(2), pp.26-37.

Tree diff
A surprisingly difficult problem

Extracting the author’s intent from the old and new files is
hard, and probably requires general AI.

Approximate by posing it as an optimization problem.

For unordered trees, the problem is NP-hard.

We only deal with ordered trees.

sdiff implements the MH-DIFF (Meaningful Hierarchical
Diff) algorithm.

Meaningful change detection in structured data. Sudarshan
Chawathe, Hector Garcia-Molina, 1997. ACM SIGMOD Record,
26(2), pp.26-37.

Tree diff
A surprisingly difficult problem

Extracting the author’s intent from the old and new files is
hard, and probably requires general AI.

Approximate by posing it as an optimization problem.

For unordered trees, the problem is NP-hard.

We only deal with ordered trees.

sdiff implements the MH-DIFF (Meaningful Hierarchical
Diff) algorithm.

Meaningful change detection in structured data. Sudarshan
Chawathe, Hector Garcia-Molina, 1997. ACM SIGMOD Record,
26(2), pp.26-37.

Tree diff
A surprisingly difficult problem

Extracting the author’s intent from the old and new files is
hard, and probably requires general AI.

Approximate by posing it as an optimization problem.

For unordered trees, the problem is NP-hard.

We only deal with ordered trees.

sdiff implements the MH-DIFF (Meaningful Hierarchical
Diff) algorithm.

Meaningful change detection in structured data. Sudarshan
Chawathe, Hector Garcia-Molina, 1997. ACM SIGMOD Record,
26(2), pp.26-37.

Tree diff
A surprisingly difficult problem

Extracting the author’s intent from the old and new files is
hard, and probably requires general AI.

Approximate by posing it as an optimization problem.

For unordered trees, the problem is NP-hard.

We only deal with ordered trees.

sdiff implements the MH-DIFF (Meaningful Hierarchical
Diff) algorithm.

Meaningful change detection in structured data. Sudarshan
Chawathe, Hector Garcia-Molina, 1997. ACM SIGMOD Record,
26(2), pp.26-37.

Tree diff
A surprisingly difficult problem

Extracting the author’s intent from the old and new files is
hard, and probably requires general AI.

Approximate by posing it as an optimization problem.

For unordered trees, the problem is NP-hard.

We only deal with ordered trees.

sdiff implements the MH-DIFF (Meaningful Hierarchical
Diff) algorithm.

Meaningful change detection in structured data. Sudarshan
Chawathe, Hector Garcia-Molina, 1997. ACM SIGMOD Record,
26(2), pp.26-37.

MH-DIFF
A very superficial overview

MH-DIFF supports 6 operations—insert, delete, update,
move, copy and glue

With associated costs ci , cd , cu(old , new), cm, cc , cg
respectively

Posed as an optimization problem: to find an edit script such
that the total cost is minimized.

MH-DIFF operates in two phases.

1 Match old and new trees.

2 Extract an edit script from the matching.

MH-DIFF
A very superficial overview

MH-DIFF supports 6 operations—insert, delete, update,
move, copy and glue

With associated costs ci , cd , cu(old , new), cm, cc , cg
respectively

Posed as an optimization problem: to find an edit script such
that the total cost is minimized.

MH-DIFF operates in two phases.

1 Match old and new trees.

2 Extract an edit script from the matching.

MH-DIFF
A very superficial overview

MH-DIFF supports 6 operations—insert, delete, update,
move, copy and glue

With associated costs ci , cd , cu(old , new), cm, cc , cg
respectively

Posed as an optimization problem: to find an edit script such
that the total cost is minimized.

MH-DIFF operates in two phases.

1 Match old and new trees.

2 Extract an edit script from the matching.

MH-DIFF
A very superficial overview

MH-DIFF supports 6 operations—insert, delete, update,
move, copy and glue

With associated costs ci , cd , cu(old , new), cm, cc , cg
respectively

Posed as an optimization problem: to find an edit script such
that the total cost is minimized.

MH-DIFF operates in two phases.

1 Match old and new trees.

2 Extract an edit script from the matching.

MH-DIFF
A very superficial overview

MH-DIFF supports 6 operations—insert, delete, update,
move, copy and glue

With associated costs ci , cd , cu(old , new), cm, cc , cg
respectively

Posed as an optimization problem: to find an edit script such
that the total cost is minimized.

MH-DIFF operates in two phases.

1 Match old and new trees.

2 Extract an edit script from the matching.

MH-DIFF
A very superficial overview

MH-DIFF supports 6 operations—insert, delete, update,
move, copy and glue

With associated costs ci , cd , cu(old , new), cm, cc , cg
respectively

Posed as an optimization problem: to find an edit script such
that the total cost is minimized.

MH-DIFF operates in two phases.

1 Match old and new trees.

2 Extract an edit script from the matching.

MH-DIFF
Matching old and new trees

Match changed/unchanged parts of old and new trees.

foo

3 *

2 a

Figure: Old tree

foo

3 bar

2 a

Figure: New tree

MH-DIFF
Minimum cost edge cover

a

b

c

e

f

g

Begin with a complete bipartite graph
with old tree nodes on one side and new
tree nodes on the other

An edge is a potential matching of old
and new trees, and comes with a cost

Goal: Prune edges to minimize total cost

The minimum cost edge cover problem
can be solved using the Hungarian
algorithm

MH-DIFF
Minimum cost edge cover

a

b

c

e

f

g

Begin with a complete bipartite graph
with old tree nodes on one side and new
tree nodes on the other

An edge is a potential matching of old
and new trees, and comes with a cost

Goal: Prune edges to minimize total cost

The minimum cost edge cover problem
can be solved using the Hungarian
algorithm

MH-DIFF
Minimum cost edge cover

a

b

c

e

f

g

Begin with a complete bipartite graph
with old tree nodes on one side and new
tree nodes on the other

An edge is a potential matching of old
and new trees, and comes with a cost

Goal: Prune edges to minimize total cost

The minimum cost edge cover problem
can be solved using the Hungarian
algorithm

MH-DIFF
Minimum cost edge cover

a

b

c

e

f

g

Begin with a complete bipartite graph
with old tree nodes on one side and new
tree nodes on the other

An edge is a potential matching of old
and new trees, and comes with a cost

Goal: Prune edges to minimize total cost

The minimum cost edge cover problem
can be solved using the Hungarian
algorithm

Demos
The fun part

Demos!

Going forward
Plenty still needs doing!

sdiff isn’t ready for everyday use yet

plenty of bugs to fix and a lot more testing necessary

maybe improve the cost model and support move, copy and
glue operations

fully support irregular lisp syntax such as quoting, line-based
comments, etc.

cleaner and more concise diff output

a more optimized implementation that scales better

integrate and replace tooling such as git diff

use as diff for other S-expression data (such as LibrePCB)

Going forward
Plenty still needs doing!

sdiff isn’t ready for everyday use yet

plenty of bugs to fix and a lot more testing necessary

maybe improve the cost model and support move, copy and
glue operations

fully support irregular lisp syntax such as quoting, line-based
comments, etc.

cleaner and more concise diff output

a more optimized implementation that scales better

integrate and replace tooling such as git diff

use as diff for other S-expression data (such as LibrePCB)

Going forward
Plenty still needs doing!

sdiff isn’t ready for everyday use yet

plenty of bugs to fix and a lot more testing necessary

maybe improve the cost model and support move, copy and
glue operations

fully support irregular lisp syntax such as quoting, line-based
comments, etc.

cleaner and more concise diff output

a more optimized implementation that scales better

integrate and replace tooling such as git diff

use as diff for other S-expression data (such as LibrePCB)

Going forward
Plenty still needs doing!

sdiff isn’t ready for everyday use yet

plenty of bugs to fix and a lot more testing necessary

maybe improve the cost model and support move, copy and
glue operations

fully support irregular lisp syntax such as quoting, line-based
comments, etc.

cleaner and more concise diff output

a more optimized implementation that scales better

integrate and replace tooling such as git diff

use as diff for other S-expression data (such as LibrePCB)

Going forward
Plenty still needs doing!

sdiff isn’t ready for everyday use yet

plenty of bugs to fix and a lot more testing necessary

maybe improve the cost model and support move, copy and
glue operations

fully support irregular lisp syntax such as quoting, line-based
comments, etc.

cleaner and more concise diff output

a more optimized implementation that scales better

integrate and replace tooling such as git diff

use as diff for other S-expression data (such as LibrePCB)

Going forward
Plenty still needs doing!

sdiff isn’t ready for everyday use yet

plenty of bugs to fix and a lot more testing necessary

maybe improve the cost model and support move, copy and
glue operations

fully support irregular lisp syntax such as quoting, line-based
comments, etc.

cleaner and more concise diff output

a more optimized implementation that scales better

integrate and replace tooling such as git diff

use as diff for other S-expression data (such as LibrePCB)

Going forward
Plenty still needs doing!

sdiff isn’t ready for everyday use yet

plenty of bugs to fix and a lot more testing necessary

maybe improve the cost model and support move, copy and
glue operations

fully support irregular lisp syntax such as quoting, line-based
comments, etc.

cleaner and more concise diff output

a more optimized implementation that scales better

integrate and replace tooling such as git diff

use as diff for other S-expression data (such as LibrePCB)

Going forward
Plenty still needs doing!

sdiff isn’t ready for everyday use yet

plenty of bugs to fix and a lot more testing necessary

maybe improve the cost model and support move, copy and
glue operations

fully support irregular lisp syntax such as quoting, line-based
comments, etc.

cleaner and more concise diff output

a more optimized implementation that scales better

integrate and replace tooling such as git diff

use as diff for other S-expression data (such as LibrePCB)

Thank You!

Code is available under GPLv3 at
https://systemreboot.net/files/sdiff-fosdem2021.tar.gz

Would you use sdiff?

How can sdiff be more useful?

Feedback and criticism welcome!

arunisaac@systemreboot.net

https://systemreboot.net/files/sdiff-fosdem2021.tar.gz

