
An introduction to Object Storage for Kubernetes. Moving
beyond file and block storage in Kubernetes

What we’ll
discuss today

▸ Introduction to Object Storage

▸ CSI and Kubernetes

▸ History of Object Stores in Kubernetes

▸ Need for COSI

▸ COSI Architecture

What is Object
Storage? How
does it differ
from file + block
storage?

Copyright:
https://www.redhat.com/
https://www.druva.com/blog/object-storage-versus-block-storage-understanding-technology-differences/

▸ Data is broken into small discrete units known as

objects and stored in a flat architecture

▸ It can be accessed by simple network APIs

▸ Organized into logical containers which store

the objects, commonly known as buckets

▸ It is cost efficient and can scale into extremely

large quantities while maintaining quick access

What is Object Storage?

https://www.redhat.com/
https://www.druva.com/blog/object-storage-versus-block-storage-understanding-technology-differences/

Source:
https://cloudian.com/blog/trends-driving-massive-coming-demand-for-object-storage/
https://cloudian.com/blog/the-common-foundations-of-kubernetes-and-object-storage/

▸ Network focused, software defined storage is very

flexible.

▸ Object storage is well suited for static data,

always-connected mobile devices, deep learning and

med-reduce analysis.

▸ There is no definitive protocol for consumption and

creation of objects

▸ We can enforce more granular permissions based on

bucket policies and namespacing.

What is the use case?

What is the role of the
Container Storage
Interface (CSI)?

Copyright https://www.cncf.io/
Source:
https://kubernetes.io/blog/2019/01/15/container-storage-interface-ga/

▸ Container Storage Interface provides platform to expose block

and file storage systems.

▸ Prior to CSI, connecting to new volumes plugins needed to be

directly a part of core Kubernetes. CSI allowed vendors to move

this logic into separate drivers. Some popular CSI drivers expose

Amazon EBS, Ceph, or Google Cloud Store.

▸ This meant more options for storage, and it made core

Kubernetes more secure and reliable.

What is CSI?

https://www.cncf.io/
https://kubernetes.io/blog/2019/01/15/container-storage-interface-ga/

CSI Terminology
Key terms and concepts in the Container Storage Interface

Storage classes provide a way more Kubernetes admins to describe
different classes of storage

Persistent volumes are pieces of storage that are provisioned
statically by an administrator or dynamically through a SC

Persistent volume claims is a request for access to storage by a user.
PVCs consume PV resources, they specify size and access modes.

Source:
https://kubernetes.io/blog/2019/01/15/container-storage-interface-ga/

History of Object Bucket
Provisioning in
Kubernetes

Copyright https://github.com/kube-object-storage/lib-bucket-provisioner/

▸ Provide a generic, dynamic provisioning API to consume object store

▸ App Pods can access the bucket in the underlying object-store like a PVC

▸ Implement k8s controller automation design with pluggable provisioners

▸ Present similar user/admin experience for new and existing buckets

▸ Be vendor agnostic (S3, RGW, Swift, GCS , etc..)

▸ It won’t orchestrate/manage the backend object store, need to handle separately

Motivation

Copyright https://github.com/kube-object-storage/lib-bucket-provisioner/

▸ Golang library wrapping a k8s controller

▸ It uses two custom resources to abstract bucket and claim/request made on it

▸ Consumed by Rook, Noobaa as external vendor/library

▸ Library handles:
･ watches on bucket claims/requests
･ reconciles/retries the requests
･ creates the artifacts such as configmap and secret consumed by app pod
･ deletes k8s resources generated on behalf of the claim

Libbucket Provisioner (DEPRECATED as Feb 2020)

Copyright https://github.com/kube-object-storage/lib-bucket-provisioner/

▸ Object Bucket Claim (OBC) is similar in usage to a PVC, it is namespaced and

references a storage class which defines the object store provisioner.

▸ Object Bucket (OB) is equivalent to PV and is cluster scoped, typically not visible to

end users, and it contains info pertinent to the provisioned bucket. OBs maintain

persistent state information that may be needed by provisioners

▸ Storage Class (SC) referenced by the OBC may contain vendor specific keys,

including region, bucket owner, credentials, etc. It also holds the reclaim policy for

the buckets

Terminologies

Copyright https://github.com/kube-object-storage/lib-bucket-provisioner/

Creation of OBC

▸ Greenfield : Provisioning will result in creating new buckets

▸ Brownfield: Provisioning will consume existing buckets

Deletion of OBC

▸ Delete reclaim policy: results in deletion of bucket and its contents

▸ Retain reclaim policy: keeps the buckets and its contents

Different Strategies

▸ There are opaque fields in OBC and SC for the provisioner in which additional

features provided by the storage vendor can be added

▸ OBC

･ additionalConfig: string map part of OBC CRD
･ User/Bucket specific features such as quota, acls, notification

▸ StorageClass

･ parameters: string map part of SC CRD
･ ObjectStore specific features such as Endpoint, Region can be included here

Features inherited from Object Store Vendor

▸ Must written in Go

▸ It’s more k8s specific

▸ Provisioner have rebuild with each library update

▸ Multiple provisioner artifacts inhibits scalability

▸ Access policies for Buckets were missing

▸ Limited access to API options, only supported Create/Delete

Limitations

Container Object Store
Interface (COSI)

COSI Terminology
What is the core terms used in the COSI project?

Source:
https://github.com/kubernetes/enhancements/tree/master/keps/sig-storage/1979-object-storage-support

Cluster scoped resource
containing fields defining the
provisioner for new buckets

Namespaced resource which
represents a request for a new

or existing bucket

Cluster scoped resource,
referenced by a Bucket Request,
contains connection information

Cluster scoped resource which
defines the provisioner and

references ConfigMap policy

Cluster scoped resource for
granting bucket access

Namespaced resource
requesting access to an

existing bucket

- Bucket Class

- Bucket

- Bucket Request

- Bucket Access Request

COSI emphasises the granularity of bucket

access policies through BACs, BAs and BARs.

COSI vs. CSI
A brief comparison between CR types

- Storage Class

- Persistent Volume

- Persistent Volume Claim

CSI has less granular access policies, and instead

allows for the predefined access modes of:

ReadWriteOnce, ReadOnlyMany, and

ReadWriteMany.

Source:
https://github.com/kubernetes/enhancements/tree/master/keps/sig-storage/1979-object-storage-support#object-relationships

COSI Object Relationships

Source:
https://github.com/kubernetes/enhancements/tree/master/keps/sig-storage/1979-object-storage-support#topology

COSI Topology

▸ Admin creates the Bucket Classes to

interface with the bucket provisioners

▸ Admin creates the Bucket Access Class

defining the provisioner

▸ Brownfield Note: For brownfield access, the

admin needs to directly create the backend

buckets and Bs

Greenfield and brownfield consumption

COSI Preparation

This workflow describes

the automation supporting

creating a new (greenfield)

backend bucket. Although

not pictured, the cosi node

adapter is responsible for

mounting the secret onto

the app pod.

User Central Controller Sidecar Controller Vendor
Provisioner Kube Admin

CREATE
BucketClass

CREATE
BucketRequest

CREATE
Bucket

Call
CreateBucket

CreateBucket

T1

T2

T3

T4

T5

User Central Controller Sidecar Controller Vendor
Provisioner Kube Admin

Copy Bucket for
new NS

Create BR for
assigned B

Create BAR
referring to BR

Create BA for
the BAR

Using BAR in Pod

T1

T2

T3

T4

T5

This is the greenfield to

brownfield access use

case, when COSI created

the Bucket CR and backing

bucket.

This workflow describes

the automation designed

for deleting a Bucket

instance and optionally the

related backend bucket.

The delete workflow is

described as a

synchronous, but it will

likely be asynchronous to

accommodate potentially

long delete times.

User Central Controller Sidecar Controller Vendor
Provisioner Kube Admin

Delete
BucketRequest

Mark Bucket
Unavailable

Wait for Bucket
Release

Call driver
DeleteBucket

DeleteBucket

T1

T2

T3

T4

T5

This workflow describes

the automation supporting

granting access to an

existing backend bucket.

User Central Controller Sidecar Controller Node Adapter Kube Admin

Create Brownfield
Bucket

Create BR
referencing B

Create BAR
references the BR

Creates BA based
on BAR and BAC

Calls driver to
grant access to

Bucket

Mounts the secret
onto the App Pod

T1

T2

T3

T4

T5

This workflow describes

the automation supporting

revoking access to an

existing backend bucket,

and the deletion of the

cluster-scoped

BucketAccess instance.

User Central Controller Sidecar Controller Node Adapter Kube Admin

Deletes the BAR

Delete the BA
(finalizer blocks)

Calls driver
revoke access

Removes BAR
and BA finalizers

Kubelet calls
NodeUnstageVolume

Removes finalizers
from BA/BR

T1

T2

T3

T4

T5

The most common

scenario is likely the case

where tokens are

compromised and the

admin needs to stop their

use.

In this case the admin may

terminate the app pod(s)

and delete the

BucketAccess instances.

User Central
Controller

Sidecar
Controller Node Adapter Kube Admin

Deletes BA
(finalizer blocks)

Calls driver to
revoke access

Deletes app pod

Kubelet calls
NodeUnpublishVolume

T1

T2

T3

T4

T5

Join the #sig-storage-cosi channel on the Kubernetes Slack to get involved, or

join our weekly meetings on Thursday @ 6PM GMT

github.com/kubernetes-sigs/container-object-storage-interface-spec

Krish Chowdhary, @krishchow_ Jiffin Tony Thottan

Jeff Vance Sidhartha Mani

Srini Brahmarotu Robert Rati

Tejas Parikh Scott Creeley

Kubernetes Slack: #sig-storage-cosi

Jon Cope

