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Why MQ APIs in Ceph RGW?

- Existing PubSub (pull mode) is going to be deprecated as it has several 
deficiencies: 

- require special zone 
- non standard APIs
- functional limitations
- consumers don’t scale

- Existing bucket notification (push mode) APIs in Ceph RGW enable a 
host of use cases: 

- Automated Data pipeline
- Automated ETL



Why MQ APIs in Ceph RGW?

- Pushing bucket notifications directly into the serverless functions (e.g. to 
knative over kafka or http) works well for simple event handling

- Pushing bucket notifications to a message broker can handle more 
complex cases (e.g. long running executions that may fail midway). 
But may introduce new complexity in the form of a message broker...

So… Native MQ APIs are the answer!



Ceph RGW Bucket Notification Push Mode

● Functionality
○ Tracking object changes in a bucket
○ Provides AWS compatible REST API

● Topic
○ Aggregates different published events

● Notification
○ Changes on bucket are published to a topic
○ Delivered to Kafka, AMQP, HTTP endpoints
○ Filtering based on object name, attributes and tags

● Event
○ S3 compatible event schema



Ceph RGW Bucket Notification Push Mode
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Applications: Automated Event Driven Data Pipeline

Source: 
https://www.redhat.com/fr/resources/automating-data-pipelines-overview?source=searchresultlisting&page=16
https://medium.com/analytics-vidhya/automated-data-pipeline-using-ceph-notifications-and-kserving-5e1e9b996661

Real Time. Event Driven. Scalable. Automated.



PubSub, Push, and Pull
PubSub (deprecated) Message Push Message Pull

Message Delivery 
Mechanism
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pubsub zone
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Notifications stored in 
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Serverless Function 
Programming Model
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Autoscaling Trigger none Based on Serverless 
function utilization

Based on the 
approximated queue size
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RADOS
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consumer acks.
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Notifications deleted after 
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KEDA Overview

● KEDA is a Kubernetes event driven 
lightweight Serverless framework.

● Key concepts:
○ Scaler 
○ Metrics

● Can be a Knative event source

Source: https://keda.sh/docs/2.0/



Message FIFO - Introduction
● Based on AWS SQS API

○ Implements a subset of it (the parts needed for bucket notifications) with minor modifications
○ Allows for standard tools (e.g. boto3) integration

● Using Ceph for durability and scalability
● Most of the implementations is inside the OSD as an “Object Class” for 

performance and scalability
● Similar to other Object Classes there will be C++ client libraries for the 

message FIFO
● At RGW level (REST APIs) the intent is to expose only the APIs needed for 

bucket notifications
○ in the future we may expose a fully functional REST based message FIFO



Message FIFO - C++ API
● create (max_part_size, max_entry_size, 

visibility_timeout, retention_period)
● delete()
● meta () -> max_part_size, max_entry_size, 

visibility_timeout, retention_period, appx_queue_size
● push (entry)
● list (max_entries, start_marker)

○ start_marker  is optional. If not provided will list from the end of the queue

● trim (start_marker, end_marker)
○ start_marker  is optional. If not provided will trim from the end of the queue until 

end_marker



Message FIFO - REST API
● ReceiveMessage(QueueUrl, MaxNumberOfMessages)
● DeleteMessageBatch(QueueUrl, 

DeleteMessageBatchRequestEntry)
○ There must always be 2 elements in the batch (start id and end id)

● GetQueueAttributes(QueueUrl)
○ May return: VisibilityTimeout, MaximumMessageSize, 

MessageRetentionPeriod, ApproximateNumberOfMessages

● Message FIFO is created and deleted based on the bucket notification topic 
creation (with endpoint of type message FIFO). No explicit Create/Delete 
Queue API added

● Messages are queued from the bucket notification mechanism inside the 
RGW. No explicit SendMessage/Batch API added



Message FIFO - Block Diagram
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Message FIFO - Server Durability 
and Scalability
● FIFO is based on RADOS objects

○ can grow with available storage for its pool

● Based on Ceph’s durability
● Operations inside the RGW are synchronous - writing the notification to the 

queue happens during the processing of the object request that triggered the 
notification

● RGWs availability and scale achieved as all state is saved in the RADOS 
objects

● One OSD writes to the tail and one read from head. Multiple FIFOs can be 
used to allow for OSD scalability

● Main object accessed only when part is added or removed



Message FIFO - Client Durability 
and Scalability
● “At-least-once” guarantee

○ Duplicate notifications may exist upon failures

● Multiple clients can read from the same FIFO since the FIFO is marking red 
segments and make them invisible to consequent reads

● Clients should trim entries once they are done processing them (or storing 
them in some other persistent storage)

● Segments which are invisible are becoming visible again after “visibility 
timeout” (if not trimmed). This allows for other clients to pick up on unfinished 
work

● Segments that were red, but not trimmed, are eventually deleted after the 
“retention period”



RGW Message FIFO - Visibility Timeout
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RGW Message FIFO - Visibility Timeout 
Expiry
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