
Ceph RGW Message Queue API for
Serverless Computing

Red Hat

Yuval Lifshitz
yuvalif

Huamin Chen
rootfs

root_fs

Agenda
● Problem Statement
● Review of Ceph RGW Bucket Notification
● PubSub, Push, and Pull
● Overview of Ceph RGW Message Queue API and KEDA Integration
● Message Queue Architecture and Deep Dive

Why MQ APIs in Ceph RGW?

- Existing PubSub (pull mode) is going to be deprecated as it has several
deficiencies:

- require special zone
- non standard APIs
- functional limitations
- consumers don’t scale

- Existing bucket notification (push mode) APIs in Ceph RGW enable a
host of use cases:

- Automated Data pipeline
- Automated ETL

Why MQ APIs in Ceph RGW?

- Pushing bucket notifications directly into the serverless functions (e.g. to
knative over kafka or http) works well for simple event handling

- Pushing bucket notifications to a message broker can handle more
complex cases (e.g. long running executions that may fail midway).
But may introduce new complexity in the form of a message broker...

So… Native MQ APIs are the answer!

Ceph RGW Bucket Notification Push Mode

● Functionality
○ Tracking object changes in a bucket
○ Provides AWS compatible REST API

● Topic
○ Aggregates different published events

● Notification
○ Changes on bucket are published to a topic
○ Delivered to Kafka, AMQP, HTTP endpoints
○ Filtering based on object name, attributes and tags

● Event
○ S3 compatible event schema

Ceph RGW Bucket Notification Push Mode

Messaging
System
Endpoints

RGW
Bucket
Notification

Serverless
Functions

Bucket Event

Applications: Automated Event Driven Data Pipeline

Source:
https://www.redhat.com/fr/resources/automating-data-pipelines-overview?source=searchresultlisting&page=16
https://medium.com/analytics-vidhya/automated-data-pipeline-using-ceph-notifications-and-kserving-5e1e9b996661

Real Time. Event Driven. Scalable. Automated.

PubSub, Push, and Pull
PubSub (deprecated) Message Push Message Pull

Message Delivery
Mechanism

Notifications stored in
bucket in a special
pubsub zone

Notifications sent to an
external message broker

Notifications stored in
RADOS backed FIFO

Serverless Function
Programming Model

Function constantly
polling for new events in
the notification bucket

Based on the external
message queue

Function reading from the
FIFO based on
autoscaling trigger

Autoscaling Trigger none Based on Serverless
function utilization

Based on the
approximated queue size

Producer Reliability RADOS RADOS until acked by
external message queue

RADOS

Consumer Reliability Notifications deleted after
consumer acks.
Stateful consumer

Based on the external
message queue

Notifications deleted after
consumer acks or timeout
expires. Stateless
consumer

KEDA Overview

● KEDA is a Kubernetes event driven
lightweight Serverless framework.

● Key concepts:
○ Scaler
○ Metrics

● Can be a Knative event source

Source: https://keda.sh/docs/2.0/

Message FIFO - Introduction
● Based on AWS SQS API

○ Implements a subset of it (the parts needed for bucket notifications) with minor modifications
○ Allows for standard tools (e.g. boto3) integration

● Using Ceph for durability and scalability
● Most of the implementations is inside the OSD as an “Object Class” for

performance and scalability
● Similar to other Object Classes there will be C++ client libraries for the

message FIFO
● At RGW level (REST APIs) the intent is to expose only the APIs needed for

bucket notifications
○ in the future we may expose a fully functional REST based message FIFO

Message FIFO - C++ API
● create (max_part_size, max_entry_size,

visibility_timeout, retention_period)
● delete()
● meta () -> max_part_size, max_entry_size,

visibility_timeout, retention_period, appx_queue_size
● push (entry)
● list (max_entries, start_marker)

○ start_marker is optional. If not provided will list from the end of the queue

● trim (start_marker, end_marker)
○ start_marker is optional. If not provided will trim from the end of the queue until

end_marker

Message FIFO - REST API
● ReceiveMessage(QueueUrl, MaxNumberOfMessages)
● DeleteMessageBatch(QueueUrl,

DeleteMessageBatchRequestEntry)
○ There must always be 2 elements in the batch (start id and end id)

● GetQueueAttributes(QueueUrl)
○ May return: VisibilityTimeout, MaximumMessageSize,

MessageRetentionPeriod, ApproximateNumberOfMessages

● Message FIFO is created and deleted based on the bucket notification topic
creation (with endpoint of type message FIFO). No explicit Create/Delete
Queue API added

● Messages are queued from the bucket notification mechanism inside the
RGW. No explicit SendMessage/Batch API added

Message FIFO - Block Diagram

msg_fifo
client

REST
frontend

RA
D
O
S

Bucket
Notifications

msg_fifo
part

msg_fifo
part

msg_fifo
part

tail

head

push

list/trim

RGW
CreateTopic

ReceiveMessage

DeleteMessage
Batch

DeleteTopic

GetQueue
Attributes

OSD

create/delete/meta

S3 Object Operation
(PUT, DELETE, POST…)

Message FIFO - Server Durability
and Scalability
● FIFO is based on RADOS objects

○ can grow with available storage for its pool

● Based on Ceph’s durability
● Operations inside the RGW are synchronous - writing the notification to the

queue happens during the processing of the object request that triggered the
notification

● RGWs availability and scale achieved as all state is saved in the RADOS
objects

● One OSD writes to the tail and one read from head. Multiple FIFOs can be
used to allow for OSD scalability

● Main object accessed only when part is added or removed

Message FIFO - Client Durability
and Scalability
● “At-least-once” guarantee

○ Duplicate notifications may exist upon failures

● Multiple clients can read from the same FIFO since the FIFO is marking red
segments and make them invisible to consequent reads

● Clients should trim entries once they are done processing them (or storing
them in some other persistent storage)

● Segments which are invisible are becoming visible again after “visibility
timeout” (if not trimmed). This allows for other clients to pick up on unfinished
work

● Segments that were red, but not trimmed, are eventually deleted after the
“retention period”

RGW Message FIFO - Visibility Timeout

tail

push

he
ad

er

he
ad

er

he
ad

er

he
ad

er

head

Client1
list 5

Client2
list 3

Client2
list 5
ofs 0:7

part0part1part2part3

Client1
list 10
Ofs 0:4

RGW Message FIFO - Visibility Timeout
Expiry

tail

he
ad

er

he
ad

er

he
ad

er

he
ad

er

headpart0part1part2part3

Client1
Crashed

Client1
trim
0:0 - 0:4

Client2
trim
0:4 - 0:7

Client2
trim
0:7 - 1:2

Visibility
TO expiredclient 2

list 5

