hXDP: Efficient
Software Packet

’rocessing on FPGA
NICs

Marco Spaziani Brunella,

Principal Hardware Engineer @ Axbryd

‘ @marcoSpazianiB

Building a lighter world

Background

* Network packet processing is ubiquitous

)

 CPU performance issues
 Starvation of Moore’s and Dennard’s scaling laws
* Need to save CPU cycles for things that cannot be done elsewhere ©

 Welcome to network accelerators!
* One size doesn’t fit all

Much smaller Takes space

% Axbryd Uses 20W Uses >200W

Building a lighter world

Why FPGAS?
Serving DNNs in Real

The Microsoft Catapult Project Tlme at Datacenter SCal
Derek Chiou with Project Brainwave

Partner Hardware Architect, Microsoft
Research professor, University of Texas at Austin

. . . . Eric Chung, Jeremy To meet the computational demands required of deep O I u t i O n
All new Microsoft Azure and Bing servers are being deployed with an FPGA that Towers, 1;:::: | Ovtcharov, learning, cloud operators are turning toward
server and the data center network and on the PCle bus. The FPGA is currently be Adrian Caulfield, Todd specialized hardware for improved efficiency and

. . . . Massengill, Ming Liu,
networking on Azure machines and search on Bing machines, but could very (Daniel Lo, Shiomi Alkalay,

Michael Haselman, Maleen infrastructure for Al serving in real time, accelerates

retargeted to other uses as needed. In this talk, I will describe how we decided on thi; Abeydeera, Logan Adams,

Hari Angepat, Christian deep neural network (DNN) inferencing in major

data center model it introduces, and the benefits it provides. Bochn, Derek Chiou, Oren services such as Bing's intelligent search features

* Increasing dep-

« Machine Learn FPGA FOR 5G: RE-CONFIGURABLE HARDWARE FOR
e 5G radio acces NEXT GENERATION COMMUNICATION

Vinay Chamola, Sambit Patra, Neeraj Kumar, and Mohsen Guizani

performance. Project Brainwave, Microsoft's principal

mmd Ao Foclalticn Alateibn dad cmmdal cmeallalicen

Microsoft Corporation DNNs continue to deliver major breakthroughs in chal-
lenging AI domains such as computer vision and natural
language processing, their computational demands have

steadily outpaced the performance growth rate of standard CPUs. These trends have spurred a

Cambrian explosion of specialized hardware, as large companies, startups, and research efforts

shift en masse towards energy-efficient accelerators such as GPUs, FPGAs, and neural pro-

cessing units (NPUs)!* for Al workloads that demand performance beyond mainstream proces-

%8 Axbryd 5

The problem with FPGA-based NICs

Programming them is Hard!

Code Simulate

N\ 7 J

%8 Axbryd

Making programming easier

%3

Axbryd

Building a lighter world

Cde Simulation Synthesis

All the approaches assume that a significant portion of
the FPGA is dedicated to networking tasks, consuming

a significant amount of HW resources

Expressive NF Logic focused

Hardware expertise Exotic/Limited prog. model
ClickNP [Sigcomm ‘16], P4 [CCR'14],
Emu [ATC ‘17] Domino [Sigcomm ‘16]

FlowBlaze [NSDI ‘19]

Our approach

1. Take the eBPF infrastructure

* Packet filter implemented in Linux Kernel 4.18+
e RISC-inspired in-kernel virtual machine that executes eBPF bytecode
* In-kernel “Maps” and “Helper Functions”

2. Re-create the same infrastructure on the FPGA
* VLIW core to execute optimized eBPF bytecode
* Hardware-based Maps and Helper Function

3. “Offload” the eBPF execution to the FPGA

Programs are
compiled from
restricted-C to eBPF
bytecode...

What is eBPF?

An in-kernel Virtual
Machine that
executes eBPF
programs

Kernel Space

eBPF Runtime
Environment

rbpf_syscall]

eBPF B ... Verified ...

Maps
...Then they are injected ... And
. ; Natiy
in the execution attached to a
environment... —N kernel’s hook -
tions
Hook

%8 Axbryd 9

eXpress DataPath —

Control Plane

LLVM/clan A
Us prog.bpf
* One of the many eBPF hooks Kernel Space PR <
* At the earliest point in the stack ! tme |
bpf_ I \
\ >/ eBPF Bytecode | :
. 1
* Avoids kernel bypass ! I} :
: | Verifier+JIT | |
1 ' -
! v - Maps
* CPU load scales with traffic load : [Native Code ;ﬁ/—)
|
S !
T =
* Transparent to the host o
[NIC Driver) J

%8 Axbryd

10

XDP program life-cycle

Packets Arrival CTX Packet Host Packet

I Structure Parsi System Header
Creation el Interaction Rewriting

xdp_md
data
data_end
data_meta

ingress_ifindex Forwarding

rx_queue_index Decision

%8 Axbryd 11

hardware eXpress DataPath

[prog.c] Control Plane }(N\

LLVM/CIang .‘ . " E B E E R R R NN NN BN R EREEE gy IS “

\ 4 - :
bpf_syscall a .
.bpf .
User Space [_progopt | : .
Kernel Space P ~ . .
1 eBPF Runtime ! : .
1 Environment ! - \ .
bpf_syscall | : . hXDP\ .
\ ‘> eBPF Bytecode | | - :
| . o

[

I n n
| V | = ‘]
| Verifier + JIT | - U ' Helper .
: ; \ 4 ’ . ; Functions/ "
Maps . ‘) .
I \ 4 | - .
: [Native Code . kmc % .

S ! " @ . ‘.

XDP Hook ? Functions
0
[NIC Driver K

%8 Axbryd

uoninquuo) InQ

hXDP architecture - onfRuratioreTime

executing the
eBPF prog

:hXDP Active Packet Select / SAVNEIASACEICN Sephs
: ctive Packet Selector :
: rad/stor and metadata m ‘ :

1,2,4,6,3 V

nst "/
Create tige

write L N
5 Exits, posting Call an HF
SCOC Transferred one- |-

1,2,4,6,8
= S / the forwarding
1,2,4 y-one Insi e the pac - -
‘(.‘ﬁ decision

Packet Buffer Oy
Read | \ w Scracch Maps

packet selection signal

Packets Helpegee

] Prog.
1 A 1 Structured
) Input Frive] .
o Helpet Functions
..... New paCket Output : Maps
input frames Queue viemory [Configurator

%8 Axbryd 13

Challenges

* hXDP resource occupancy must be small
* Minimize HW resources requirements
* Allow designers to fit different Accelerators on the FPGA

* hXDP performance must be comparable to the ones of an x86 CPU
* be as fast as a server-grade CPU core
* FPGAs is clocked at 5x-10x lower frequency than server CPUs

Challenge: make it small!

e We assume the FPGA is used for other accelerators

* hXDP Design Principles

* Keep hardware simple

~

/ D D D D / Shared FPGA Resources \
CPU
0000 || mw
[Cache Memory]
[Data-Preprocessing J
K PCle BUS Accelerator
k Host Machine \ FPGA NIC j

* Adapt ISA to simplify HW design and gain performance
* Move the ILP extraction complexity to the compiler/optimizer

15

hXDP resources utilization

hXDP

Available resources
for other accelerators

NetFPGA Virtex-7 Die

%8 Axbryd

Image in scale

Table 1
COMPONENT LoGIcC REGISTERS BRAM
PIQ 215, 0.05% 58, <0.01% 6.5, 0.44%
APS 9K, 2.09% 10K, 1.24% 4,0.27%
SEPHIROT 27K, 6.35% 4K, 0,51% -
INSTR MEM - - 7.7,0.51%
STACK 1K, 0.24% 136, 0.02% 16, 1,09%
HF SUBSYSTEM 339, 0.08% 150, 0.02% -
MAPS SUBSYSTEM 5.8, 1.35% 2.5K,0.3% 16, 1.09%
TOTAL K, 9.91% 18K, 2.09% 50, 3.40%
W/ REFERENCE NIC | 80K, 18.53% 63K, 7.3% 214, 14,63%

Closed timing @156.25MHz an a NetFPGA-SUME

16

Challenge: make it fast!

l,,lw-

m

|
i n
\‘_

=

x86
* Clock Frequency: 2-4 GHz * Clock Frequency: 100-350 MHz
* Hardware-enanched ILP extraction * Not suited for any complex ILP hardware*
* Deep Pipeline stages e Short pipeline stages
* Specialized iterative execution * Killer app: parallel execution

% Axb FYd * Such as speculative execution and Out-Of-Order execution 17

Building a lighter world

Filling the gap

e Execute eBPF bytecode in a specialized VLIW CPU

To illustrate code optimizations, we will use a
simple eBPF UDP tracker program

et Al b o covanlaoviti for codao narallolizaotion icnichod ot “caovanilo! tivoo

rarding

* Code Optimization
* eBPF Instruction Set Architecture extension
* Pruning of unnecessary instructions

18

Optmizing eBPF: zeroing

xdp_fw
int struct xdp_md xctx

eBPF Bytecode

void xdata_end = (void long) ctx->data_end 0: 61 13 04 00 00 00 00 00 r3 = *x(u32 %) (rl + 4)
IO =GN S AR S L) EEECEne 1: 61 12 00 00 00 00 00 00 2 = %(u32 %) (rl + 0)
struct flow_ctx_table_leaf new_flow 0 par —D7 04 00 00 00 00 00 00 ré =0
struct flow_ctx_table_key flow_key 0 3: 63 4a fcC T8 00 ¥(u32 *)(r10 - 4) = r4
struct flow_ctx_table_leaf *xflow_leaf #

4: 7b 4 0 00 00 ——aicll64 %) (rl0 - 16)
struct ethhdr xethernet 7b 4 ff * (
struct iphdr *ip 6: b7 06 00 00 01 00 00 00 r6 =1

struct udphdr x14

int ingress_ifindex
uint64_t nh_off 0
u8 port_redirect 0

int ret XDP_PASS
u8 is_new_flow = 0
int vport 0

Axbryd

Building a lighter world

%3

Unnecessary on hardware > we can

provide zeroed memory

21

Optimizing eBPF: 3-operands instructions

ethernet:
J
L
ethernet = data;
nh_off = sizeof(xethernet);

if (data + nh_off > data_end)
goto EOP;

ingress_ifindex = ctx->ingress_ifindex;

switch ((ethernet—>h_proto))
{
case ETH_P_IP:
goto ip;
default:
goto EOP;

1
J

7: bf 24 00 00 00 00 00 00 rd =r2

8: 07040000 0e000000 rd4 += 14

9: 2d 34 3c 0000 00 00 00 if r4 > r3 goto +60

Merge #7 and #8 into a single instruction

L

rd =r2+ 14

Trivial to do in hardware and to recognize at

%8 Axbryd

compile time

22

Optimizing eBPF: Boundary Checks

ethernet:

ethernet data
nh_off ethernet

. 7: bf 24 00 00 00 00 00 00 rd =r2
if (data nh_off data_end
goto EOP 8: 07 04 00 00 Oe 00 OO OO r4 += 14
O 26-34-3-00-00-0000-00 ifrd > r2 goto 460

ingress_ifindex = ctx—>ingress_ifindex
switch ethernet—>h_proto

case ETH_P_IP
goto ip

default Provide Boundary Check in HW!

goto EOP

%8 Axbryd 73

Extending eBPF: 6B load/store

LDX48 0PC : std_logic_vector(7 downto 0) := "01011001"; —— 0x59
LDXW_OPC : std_logic_vector(7 downto 0) := "01100001"; —— 0x61
LDXH_OPC : std_logic_vector(7 downto 0) := "01101001"; —— 0x69
LDXB_OPC : std_logic_vector(7 downto 0) := "01110001"; —— 0x71
LDXDW_OPC : std_logic_vector(7 downto 0) := "01111001"; —— 0x79
STX48_0PC : std_logic_vector(7 downto 0) := "01010010"; —— 0x52
ST48_0OPC : std_logic_vector(7 downto 0) := "01011010"; —— 0x5a

6 Bytes loads & stores

%8 Axbryd

Optimizing eBPF: exit compression

EOP: 70: bf 6000 00 00 00 00 00 ro=1
return XDP DROP; 71: 950000 00 00 00 00 00 exit

Define per-action exit

\

exit_drop

%8 Axbryd

25

Impact of Code optimizations on original eBPF bytecode

no-zeroing

'E= bound_checks
=] 3-operands .
15.0 SN parametrized_exit ¢

20.0 I L Sy e B

..

Bl 6B load/store
c 125+ @Rt
.g 1 1 | 1 | # #
1 L I =W . : e | 4 I =) . original instr — Moptimized instr
5 10.0 ' ' : ' : %gain = 100 X g £
X El #optimized instr
754 B Bl = B CIB b PN O MEE L Y
5.0 —Hil— -
] £\

o N
o w
+ E
% !
% B

&2’1« Q
M S
D x&
'ob «0\> +6Q /

% AXbFYd 26

Overall gain: optimization + ILP

350 hXDP optimized

Original eBPF bytecode length

1 code-motion
I instructions-parallelization
£ 250 = l\
s so s Average Instructions Per Cycle: 2.31 ed due to
> | Jelization
S Y S

50 -7

T

Final VLIW instructions

X86 JIT Compiler mostly expands
code

%8 Axbryd 7

1570 J AU\ H x86@1.2GHz -
E=S x86@2.1GHz

40 ET x86@3.7Ghz
X3 hXDP

of PEN H—

201~ W

101 i \\ N
AN oo \\ 0t \

XDP_DROP XDP_TX redirect

Baseline tput measurements
for basic XDP programs

%8 Axbryd

Performance evaluation:
Microbenchmarks

'(//1

=

o
/
/]

-}_/o_oln./o_t.-.0.0.0-

1 10 20

x86@1.2GHz
x86@2.1GHz -
x86@3.7GHz
hXDP

30 4
n. of helper call exec

Forwarding tput when
calling a helper function

Packet generation: ~60 Mpps (64B UDP packets)

25 { il Rl e
2N SERZVEENEREN
20 ON - |
il 2N —
15 BN 5
10 ::::
. y .|3:3:\
B x86@1.2GHz x86@3.7GH
0__- x86@2.1GH hXDP 2
1 2 4 8 16
key size

Impact on forwarding tput
on map accesses

28

Performance evaluation:
LInux XDP programs

x86@1.2GHz

301 x86@2.1GHz LT
x86@3.7Ghz
v 20 - h)fDP s - e 1 s S
= | i -
= =V
1O e e - s TP SBER
0. S \ =9 17=)
(‘:p < & ((@Q @ le\' @Q\ Qo?’
<, KO <, o ¥ \b >
bQ 4 < Q,(-’ \0 <O /
+ & O o8 > QO R\
‘0 b (o N +/

%8 Axbryd

hXDP@156.25MHz has
comparable performance to an
x86@2.1GHz for programs that
live entirely in the NIC

Packet generation: ~60 Mpps (64B UDP packets)

29

Performace evaluation:
Real-world applications

oooooo
oooooo
oooooo

oooooo

oooooo

oooooo

......
oooooo
oooooo
oooooo

simple firewall

%8 Axbryd

x86@1.2GHz
x86@2.1GHz
x86@3.7GHz -

000000

......
oooooo
oooooo
oooooo

oooooo

oooooo

katran

hXDP@156.25MHz
outperforms an x86@2.1GHz

Packet generation: ~60 Mpps (64B UDP packets)

30

latency [us]

50 -

S
o

w
o

N
o

Performance evaluation:
_atency Measurements

X3 nfp

| == hXDP

B . - T
.o 00

10 -1

|
ooooo
.o eq
.o eq

3'3:3:3'@- 3:3:3:3‘& B

BT x86@3.7GHz -t

b e e d L besed

| |

256 51
packet size [bytes]

1518

31

What’s new since Nov-20207

* Swapped the platform
* We're actively developing on a Xilinx Alveo U50
* Integrated hXDP inside Corundum (open NIC design developed at UCSD)

* Benefits
* Bumped form 156.25MHz to 250MHz
* Exploiting new URAMs on the Virtex Ultrascale+ for bigger maps
* Backing URAMs with High Bandwidth Memory for huge maps ©
e Tighter host interaction thanks to Corundum’s driver!

%8 Axbryd 32

Many-core design?

[—PCKT IN: >

%S

Scheduler

PCKT MNGR ¢ 3 SPH #1
RSS #1 EE
.
u

r))
PCKT MNGR SPH #0
> #0 » EE
\. J —
r))

Axbryd

Building a lighter wor

ld

J ———
|
| |
|
#n

<:J.no 1947

Unidirectional NAT use-case
* Avoids shared Maps

From 4 to 2 lanes per each CPU
* Working on DLP rather than ILP

Closed the design with 4 CPUs

Trying to have 8 ©

With 4 cores, we’re at 5.6x

Conclusion

* hardware eXpress DataPath
e eBPF infrastructure on FPGA NICs

* Benefits
e Executes unmodified eBPF programs
* Low Hardware resources
* Frees up CPU cores with similar performance at 10x lower latency

Next Steps

* Compiler
e Re-oreder memory access instruciton to improve ILP

 Hardware Parser
e Offload large sections of eBPF programs to dedicated HW block

* Huge Maps

* Bilion of entries = Transparent hierarchy of all the memory resources on the FPGA

* ASIC

* Fixed functionalities (e.g. Sephirot) = put them into custom silicon

%8 Axbryd

%8 Axbryd

