
hXDP: Efficient
Software Packet
Processing on FPGA
NICs
Marco Spaziani Brunella,

Principal Hardware Engineer @ Axbryd

1
@marcoSpazianiB

Background
• Network packet processing is ubiquitous

• CPU performance issues
• Starvation of Moore’s and Dennard’s scaling laws
• Need to save CPU cycles for things that cannot be done elsewhere J

• Welcome to network accelerators!
• One size doesn’t fit all

Much smaller
Uses 20W

Takes space
Uses >200W 4

Why FPGAs?

• Reprogrammability and resource sharing
• Run-time reconfiguration of the function w.r.t. ASICs
• Combination of different “building blocks” to build an ad-hoc solution

• FPGAs as commodity resource
• Increasing deployments of FPGAs as commodity accelerators
• Machine Learning tasks
• 5G radio access network functions

5

The problem with FPGA-based NICs

NetFPGA SUME

Simulate Synthesis

Network Function Logic

Code

Programming them is Hard!

6

Making programming easier
NF Logic

Code Simulation Synthesis

High-level
Synthesis

Faster programming
Expressive

Hardware expertise

Match-Action
Abstraction

Faster programming
NF Logic focused

Exotic/Limited prog. model
ClickNP [Sigcomm ‘16],
Emu [ATC ‘17]

P4 [CCR ’14],
Domino [Sigcomm ‘16]
FlowBlaze [NSDI ‘19]

All the approaches assume that a significant portion of
the FPGA is dedicated to networking tasks, consuming

a significant amount of HW resources

7

Our approach

1. Take the eBPF infrastructure
• Packet filter implemented in Linux Kernel 4.18+
• RISC-inspired in-kernel virtual machine that executes eBPF bytecode
• In-kernel “Maps” and “Helper Functions”

2. Re-create the same infrastructure on the FPGA
• VLIW core to execute optimized eBPF bytecode
• Hardware-based Maps and Helper Function

3. “Offload” the eBPF execution to the FPGA

8

What is eBPF?

9

An in-kernel Virtual
Machine that
executes eBPF

programs

Programs are
compiled from

restricted-C to eBPF
bytecode…

…Then they are injected
in the execution
environment…

… Verified …

… And
attached to a
kernel’s hook

eXpress DataPath

• One of the many eBPF hooks
• At the earliest point in the stack

• Avoids kernel bypass

• CPU load scales with traffic load

• Transparent to the host

10

XDP program life-cycle

11

CTX
Structure
Creation

Packet
Parsing

Packets Arrival

struct xdp_md {
__u32 data;
__u32 data_end;
__u32 data_meta;
/* Below access go through struct xdp_rxq_info */
__u32 ingress_ifindex; /* rxq->dev->ifindex */
__u32 rx_queue_index; /* rxq->queue_index */
};

Host
System

Interaction

Packet
Header

Rewriting

Forwarding
Decision

hardware eXpress DataPath

12

hXDP architecture

13

Configuration Time

Populate
Instruction

Memory

Configure
Maps

Run Time

Packets
Arrive

Transferred one-
by-one inside the

Packet Buffer

Create the CTX
struct for the

packet

Sephirot starts
executing the

eBPF prog

Call an HF

Access
Maps

R/W packet data
and metadata

Exits, posting
the forwarding

decision

Challenges

• hXDP resource occupancy must be small
• Minimize HW resources requirements
• Allow designers to fit different Accelerators on the FPGA

• hXDP performance must be comparable to the ones of an x86 CPU
• be as fast as a server-grade CPU core
• FPGAs is clocked at 5x-10x lower frequency than server CPUs

14

Challenge: make it small!
• We assume the FPGA is used for other accelerators

• hXDP Design Principles
• Keep hardware simple
• Adapt ISA to simplify HW design and gain performance
• Move the ILP extraction complexity to the compiler/optimizer

15

hXDP resources utilization

NetFPGA Virtex-7 Die

hXDP

Available resources
for other accelerators

Image in scale

Closed timing @156.25MHz an a NetFPGA-SUME

Table 1

16

Challenge: make it fast!

VS

x86 FPGA

• Clock Frequency: 2-4 GHz
• Hardware-enanched ILP extraction
• Deep Pipeline stages
• Specialized iterative execution

• Clock Frequency: 100-350 MHz
• Not suited for any complex ILP hardware*
• Short pipeline stages
• Killer app: parallel execution

* Such as speculative execution and Out-Of-Order execution

How to fill the gap?

17

Filling the gap

• Execute eBPF bytecode in a specialized VLIW CPU
• All the complexity for code parallelization is pushed at “compile” time

• Simple design principles
• 4-stage pipeline for the CPU
• 4 parallel execution lanes
• Constant latency instruction implementation à Heavy use of prefetching and forwarding
• 1-clock-cycle for Helper Functions execution

• Code Optimization
• eBPF Instruction Set Architecture extension
• Pruning of unnecessary instructions

18

To illustrate code optimizations, we will use a
simple eBPF UDP tracker program

Optmizing eBPF: zeroing

0: 61 13 04 00 00 00 00 00 r3 = *(u32 *)(r1 + 4)
1: 61 12 00 00 00 00 00 00 r2 = *(u32 *)(r1 + 0)
2: b7 04 00 00 00 00 00 00 r4 = 0
3: 63 4a fc ff 00 00 00 00 *(u32 *)(r10 - 4) = r4
4: 7b 4a f0 ff 00 00 00 00 *(u64 *)(r10 - 16) = r4
5: 7b 4a e8 ff 00 00 00 00 *(u64 *)(r10 - 24) = r4
6: b7 06 00 00 01 00 00 00 r6 = 1

SEC("xdp_fw")
int xdp_fw_prog(struct xdp_md *ctx)
{

void *data_end = (void *)(long)ctx->data_end;
void *data = (void *)(long)ctx->data;

struct flow_ctx_table_leaf new_flow = {0};
struct flow_ctx_table_key flow_key = {0};
struct flow_ctx_table_leaf *flow_leaf;

struct ethhdr *ethernet;
struct iphdr *ip;
struct udphdr *l4;

int ingress_ifindex;
uint64_t nh_off = 0;
u8 port_redirect = 0;
int ret = XDP_PASS;
u8 is_new_flow = 0;
int vport = 0;

eBPF Bytecode

Unnecessary on hardware à we can
provide zeroed memory

21

Optimizing eBPF: 3-operands instructions

7: bf 24 00 00 00 00 00 00 r4 = r2

8: 07 04 00 00 0e 00 00 00 r4 += 14

9: 2d 34 3c 00 00 00 00 00 if r4 > r3 goto +60

Merge #7 and #8 into a single instruction

r4 = r2+ 14

ethernet:
{

ethernet = data;
nh_off = sizeof(*ethernet);

if (data + nh_off > data_end)
goto EOP;

ingress_ifindex = ctx->ingress_ifindex;
switch (ntohs(ethernet->h_proto))
{
case ETH_P_IP:

goto ip;
default:

goto EOP;
}

}

Trivial to do in hardware and to recognize at
compile time

22

Optimizing eBPF: Boundary Checks

7: bf 24 00 00 00 00 00 00 r4 = r2
8: 07 04 00 00 0e 00 00 00 r4 += 14
9: 2d 34 3c 00 00 00 00 00 if r4 > r3 goto +60

Provide Boundary Check in HW!

ethernet:
{

ethernet = data;
nh_off = sizeof(*ethernet);

if (data + nh_off > data_end)
goto EOP;

ingress_ifindex = ctx->ingress_ifindex;
switch (ntohs(ethernet->h_proto))
{
case ETH_P_IP:

goto ip;
default:

goto EOP;
}

}

23

Extending eBPF: 6B load/store

6 Bytes loads & stores

24

Optimizing eBPF: exit compression

70: bf 60 00 00 00 00 00 00 r0 = 1
71: 95 00 00 00 00 00 00 00 exit

Define per-action exit

exit_drop

25

Impact of Code optimizations on original eBPF bytecode

%𝑔𝑎𝑖𝑛 = 100 ×
#!"#$#%&' #%()" − #!*)#+#,-. #%()"

#!*)#+#,-. #%()"

26

Overall gain: optimization + ILP

Original eBPF bytecode length

Instructions removed due to
optimization/parallelization

Final VLIW instructions

X86 JIT Compiler mostly expands
code

27

Average Instructions Per Cycle: 2.31

Performance evaluation:
Microbenchmarks

Baseline tput measurements
for basic XDP programs

Forwarding tput when
calling a helper function

Impact on forwarding tput
on map accesses

Packet generation: ~60 Mpps (64B UDP packets)
28

Performance evaluation:
Linux XDP programs

Packet generation: ~60 Mpps (64B UDP packets)

hXDP@156.25MHz has
comparable performance to an
x86@2.1GHz for programs that

live entirely in the NIC

29

Performace evaluation:
Real-world applications

Packet generation: ~60 Mpps (64B UDP packets)

hXDP@156.25MHz
outperforms an x86@2.1GHz

30

Performance evaluation:
Latency Measurements

31

What’s new since Nov-2020?

• Swapped the platform
• We’re actively developing on a Xilinx Alveo U50
• Integrated hXDP inside Corundum (open NIC design developed at UCSD)

• Benefits
• Bumped form 156.25MHz to 250MHz
• Exploiting new URAMs on the Virtex Ultrascale+ for bigger maps
• Backing URAMs with High Bandwidth Memory for huge maps J
• Tighter host interaction thanks to Corundum’s driver!

32

Many-core design?

33

• Unidirectional NAT use-case
• Avoids shared Maps

• From 4 to 2 lanes per each CPU
• Working on DLP rather than ILP

• Closed the design with 4 CPUs

• Trying to have 8 J

• With 4 cores, we’re at 5.6x

Conclusion

• hardware eXpress DataPath
• eBPF infrastructure on FPGA NICs

• Benefits
• Executes unmodified eBPF programs
• Low Hardware resources
• Frees up CPU cores with similar performance at 10x lower latency

34

Next Steps

• Compiler
• Re-oreder memory access instruciton to improve ILP

• Hardware Parser
• Offload large sections of eBPF programs to dedicated HW block

• Huge Maps
• Bilion of entries à Transparent hierarchy of all the memory resources on the FPGA

• ASIC
• Fixed functionalities (e.g. Sephirot) à put them into custom silicon

35

