
A Look at High-Speed
Software Dataplanes and
their Upcoming Challenges

Tom Barbette and Alireza Farshin
KTH Royal Institute of Technology

1

Modular
Software
Dataplanes

Store

Flexible

Reusable bricks
Community

Modular
Software
Dataplanes

3

Store

Flexible

Reusable bricks
Community

Easy development

1 One Modular Software Dataplane: FastClick

2
Today's Ecosystem
BESS, VPP, FastClick, ...

3 Challenges and recent research

4

Loopback
(Simple
Forwarding)

sudo click --dpdk -- -e
'FromDPDKDevice(0)
-> EtherMirror
-> ToDPDKDevice(0);'

5

FromDPDKDevice

EtherMirror

ToDPDKDevice

Receives packets from a
NIC via DPDK

Swaps/Mirrors MAC
addresses

Sends packets to a NIC
via DPDK

6

7

8

9

Forwarding results

Throughput

FastClick

Intel(R) Xeon(R) Gold 5217 CPU @ 3.00GHz

Campus trace
10

Router (A Standard IP Router)

11

NF chains

FastClick

Intel(R) Xeon(R) Gold 5217 CPU @ 3.00GHz

Campus trace
12

2 Today's Ecosystem

13

Early 2000s...

14

The Click Modular
Router

Eddie Kohler et al.

3200 Citations

15

FastClick

Click

Fork

What’s the magic?
Single CPU core, router, campus trace

tbarbette/fastclick

17

https://bit.ly/3bzcfjG

Check the paper for details

Also : NetBricks, NetSlice, DPDK Graph API, …

Rebuilt around DPDK

BESS
SSE everywhere

VPP
Huge legacy

FastClick

Click

Fork

19

Which one is best?

Comparing the Performance of

State-of-the-Art Software Switches

for NFV, Zhang et al., CoNEXT’19

Scatter plots of latency/throughput and of

average/standard deviation of latency,

under 64B synthetic packets and

bidirectional 10Gbps links.

20

At equivalent features
Simple Forwarding, Single-core at 1200MHz

21

3
Challenges for High-Speed
Packet Processing
+
Our Recent Research

22

Faster link speeds (100/200/400 Gbps)

● Packets are received at a

faster pace (every few

nanoseconds).

● Accessing memory (DRAM)

would kill the performance.

● Inefficient software/hardware

would restrict us from

processing at high rate.

23

Per-core performance is not increasing as before

● Demise of Dennard scaling

(frequencies are not increasing)

● Less single-thread performance

● More cores

24

What is Metadata?
● Packet Metadata: Information about raw

packets/buffer

○ Length

○ Checksum

● User Metadata or Packet Annotation:

Information produced/used during

packet processing

○ Source & Destination IP addresses

○ VLAN ID

25

Driver

Application

Driver Descriptor

Driver Metadata

DPDK Descriptor

rte_mbuf struct

Data (Buffer)

Headroom

Poll Mode Driver
(PMD)

DPDK Libraries

Application

Copied Descriptor

Application
Metadata

Buffer Address

Overlayed Descriptor

Application
Metadata

Buffer Address

DPDK Metadata

Copy and Conversion

Copy and Conversion

Requires Two

Copying

Operations

26

1
FastClick

Model

Driver Descriptor

Driver Metadata

DPDK Descriptor

rte_mbuf struct

Data (Buffer)

Headroom

Poll Mode Driver
(PMD)

DPDK Libraries

Application

Copied Descriptor

Application
Metadata

Buffer Address

Overlayed Descriptor

Application
Metadata

Buffer Address

DPDK Metadata

Copy and Conversion

Copy and Conversion
Point and Cast Requires

One Copy
Operation

but
Carries

Unnecessary
Fields

27

1
2

Requires Two

Copying

Operations

FastClick
Model BESS

Model

X-Change

● Exchanging buffers with DPDK

● Provides custom buffers to DPDK

drivers

● Prevents any extra operation

● Fewer in-flight buffers

● Avoid allocating/releasing mbufs

● Implemented via conversion

functions (requires linking)

Driver Descriptor

Driver Metadata

DPDK Descriptor

rte_mbuf struct

Data (Buffer)

Headroom

Poll Mode Driver
(PMD)

DPDK Libraries

Application

X-Change Descriptor

Application
Metadata

Buffer Address

Exchanging

28

tbarbette/xchange

https://github.com/tbarbette/xchange

Metadata
Management
Models

Simple Forwarding

Throughput

FastClick

Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz

Fixed-size Packets

Mellanox ConnectX-5 (MLX5 Driver *)
29

*Without vectorized PMD

PacketMill

A tool that uses the available information to build a

customized- and optimized-binary for the input NF

● X-Change (using customized DPDK buffers)

● Source-code modifications (embedding

constants+graph and devirtualizing)

● IR-code modifications (reordering data

structures)

Better Metadata

Management

Reduce the Cost

of Flexibility

30

PacketMill

Simple Forwarding

Throughput

Check out our extended abstract and upcoming

paper at ASPLOS'21:

PacketMill: Toward per-core 100-Gbps Networking

aliireza/packetmill
31

FastClick

Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz

Fixed-size Packets

Mellanox ConnectX-5 (MLX5 Driver *)

*Without vectorized PMD

https://asplos-conference.org/abstracts/asplos21-paper393-extended_abstract.pdf
https://github.com/aliireza/packetmill
https://github.com/aliireza/packetmill

Conclusion Don’t write your network

dataplane from scratch, use

a modular software

dataplane!

Better, use

FastClick+PacketMill!

aliireza/packetmill

tbarbette/fastclick

32

https://github.com/aliireza/packetmill
https://github.com/aliireza/packetmill
https://www.github.com/tbarbette/fastclick

Q&A

33
aliireza/packetmill

tbarbette/fastclick

Don’t writ your network

dataplane from scratch, use

a modular software

dataplane!

Better, use

FastClick+PacketMill!

https://github.com/aliireza/packetmill
https://github.com/aliireza/packetmill
https://www.github.com/tbarbette/fastclick

Using Conversion Functions rather

than Direct Assignment

X-Change
Implementation

● DPDK Implementation (MLX5)

● X-Change Implementation (MLX5)

● Conversion Functions

pkt->vlan_tci = rte_be_to_cpu_16(cqe->vlan_info);

xchg_set_vlan_tci(pkt, rte_be_to_cpu_16(cqe->vlan_info));

/* Default DPDK */
void xchg_set_vlan_tci(struct xchg* pkt, uint16_t vlan_tci) {
((struct rte_mbuf*)pkt)->vlan_tci = vlan_tci; }

/* Custom Implementation */ void xchg_set_vlan_tci(struct
xchg* pkt, uint16_t vlan_tci) {
SET_VLAN_ANNO((Packet*)pkt, vlan_tci); }

34

Conclusion FastClick comes with lots of great features

Provides good performance

Well-integrated with NPF, which enables easy

prototyping

Multi-hundred-Gbps networking means staying in

L1 and L2

Deep-optimize your pipeline with PacketMill!

X-Change allows to avoid the rte_mbuf, and

directly spawn your descriptor

aliireza/packetmill

tbarbette/fastclick

35

https://github.com/aliireza/packetmill
https://github.com/aliireza/packetmill
https://www.github.com/tbarbette/fastclick

Metadata Management Models

BESS, FastClick
(Overlaying)

VPP
(Copying+Overlaying)

● Overlays the

user medata

data with

rte_mbuf

● Overlays the user

medata data with

rte_mbuf

● Copies some of the

fields

FastClick
(Copying)

● Copies the

user medata

data from

rte_mbuf

36

1 2 1 2+

Metadata Management Models

BESS, FastClick
(Overlaying)

VPP
(Copying+Overlaying)

PacketMill

(X-Change)

● Overlays the

user medata

data with

rte_mbuf

● Overlays the user

medata data with

rte_mbuf

● Copies some of the

fields

● Provides custom

buffers to DPDK

drivers

● Prevents any

extra operation

FastClick
(Copying)

● Copies the

user medata

data from

rte_mbuf

37

1 2 1 2+

How to Make the
Most out of the
Current Hardware?

● Better load balancing

● Avoid unnecessary memory accesses

● Optimize software

38

Example of
improvements

Thread traversal analysis

39

Example of
improvements

Userlevel clock

40

What does FastClick
have on top of the
others?

● Thread vector

● Userlevel timing

But it lacks:

● Metadata Liveness Analysis (BESS)

● SSE Instructions* (VPP)

* Their real impact with many scattered different flows
should to be proven. 41

Forwarding results

Latency

FastClick

Intel(R) Xeon(R) Gold 5217 CPU @ 3.00GHz

Campus trace
42

Router (single core)

FastClick

Intel(R) Xeon(R) Gold 5217 CPU @ 3.00GHz
43

PacketMill

Click
Source

Config
File

Optimized
Click

Source

Click
Binary

Merged
IR

Code

Compile
LTO

NF
Configuration

IR-Code Modifications

Source-Code
Modifications

PacketMill
+

Optimized
IR

Code
Specialized

Binary

Compile

Link
ing

Reordering
Data

Structures

Configuration-based
Optimizations

DPDK
Source

xchg.o +

X-Change
API

Customizing
Metadata

2

3

1

44

Software
Dataplanes

Flexible

Cheap

Outsourcing
45

46

47

