Calico/VPP: All You Can Eat Networking
Bringing Kubernetes Goodness to your
Hungriest Workloads

Aloys Augustin, Casey Davenport
FOSDEM 2021

What is Calico?

e Open-source Kubernetes networking and network policy
e Kubernetes pods, nodes, VMs, and legacy workloads
e Rich network policy APIs

e Battle-tested: deployed in production at scale

What is Calico?

Configuration, Network Policies, etc.

APU<

Node Node

Under the hood

* CNI plugin / IPAM plugin:
o (Called by the container runtime on pod ADD / DEL on a per-pod basis
o Configures pod network namespace with routes, devices, etc.
» calico/node:
o Runs on every node as a DaemonSet
o Makes routing and policy decisions, make sure they are enforced

o two main subcomponents: felix and BIRD

Calico design philosophy

Use the right tool for the job

Calico design philosophy

Control plane

Packets Data plane

Calico design philosophy

Configuration Felix Calculation
Graph

Data plane API: gRPC or built-in

Data plane driver

netlink/iptables

Calico design philosophy

Configuration Felix Calculation
Graph

Data plane API: gRPC or built-in

Data plane driver

netlink/iptables, eBPF, Windows HNS, VPP, etc.

Calico design philosophy

Call from container _ .
Untime Calico CNI plugin

Data plane API: gRPC or built-in

Data plane driver

netlink/iptables

Active community

« 200+ contributors on GitHub
« Regular quarterly releases

o Active slack community of users and developers

Calico/VPP integration

What is VPP?

e Fast, open-source userspace networking dataplane - https://fd.io/

e Feature-rich L2-3-4 networking: tunneling, NAT, ACL, crypto, TCP, Quic,...
e Fasily extensible through plugins

e Supports virtual and physical interfaces

e Fast API: > 200k updates/second

e Highly optimized for performance: vectorization, cache efficiency
e Multi-architecture: x86, ARM

https://fd.io/

Calico/VPP integration

e VPP dataplane option for Calico

o Transparent for users except for basic initial interface configuration
e Custom VPP plugins for K8s networking:

o Optimized NAT plugin for service load balancing

o Specific plugin for efficient Calico policies enforcement
e VPP configuration optimized for container environments:

o Interrupt mode, SCHED_RR scheduling

o No hugepages required

o GRO / GSO support for container interfaces

Benefits

e Performance
o World-class encryption performance: IPsec / Wireguard
o Reduced overall CPU consumption
e Operational simplicity
o Network stack decoupled from OS - easier to upgrade
o VPP is packaged as a regular container
o Very limited kernel dependencies
e Better control over resources dedicated to container networking

e Extensibility through VPP plugins

Logical network topology

e VPP inserts itself between the host and the network

e Pure layer 3 network model (no ARP/mac address in the pods)

Regular Calico Calico/VPP
A pr— |
Host Pods
Pods BGP, kubelet, felix...
- —
veth interfaces I tun interfaces m_
Host
VPP Routing, Load balancing, Policies...
BGP, kubelet, felix +
Routing, Load balancing, Policies

I uplink interface
uplink interface

Packet flow

e One tun interface per pod
e No changes required to the applications

e Kernel provides pod isolation / namespacing

VPP

Routing, Load Balancing, Policies...

Application

Socket APls tun interface

Kernel network namespace
TCP Stack

uplink interface

Software architecture

(Felix
K8s API

Y

Policies rendering

Calico API \ Y
Calico-VPP agent
9 > VPP
CNI Plugin > CNI, BGP Routing, Services, Policies
g J L
RS RS
Calico-node container VPP container
L
Y

Calico-VPP-node pod

: Regular Calico / K8s components : VPP-specific components

Project status

e Open-source on Github

o https://github.com/projectcalico/vpp-dataplane

e Alpha status
e (alico incubation project

o Most Calico features are now supported

https://github.com/projectcalico/vpp-dataplane

Demo

e (alico/VPP deployment

e \/PP restart

Performance optimizations

Testbed configuration

e Hardware: 2x Cisco C240-M5 UCS with

(0]

(0]

(0]

Intel Xeon Platinum 8168 CPU (24c, 48t @ 2.7GHz)
384GB 2666MHz DDR4
Intel XL710 40G NIC - configured with 1500 bytes MTU

e Software

(0]

(0]

(0]

o

Ubuntu 18.04, kernel 5.4.0-51
Kubernetes 1.18, Calico 3.17.1
nginx, iperf from Ubuntu packages

wrk master from https://github.com/wg/wrk

e Methodology

o

Results averaged over 3 runs

https://github.com/wg/wrk

VPP Wireguard implementation

e Wireguard implementation in VPP contributed by Artem Glazychev (Xored)
e Used in Calico/VPP to provide encryption compatible with other dataplanes
e Benchmark:

o Wireguard encryption between nodes

o Comparison of 3 dataplanes: Linux, eBPF, VPP

o 1) Single flow iperf tests between two pods

o 2)wrktest, nginx server, 600B requests

Wireguard benchmarks

Wireguard throughput

@ Throughput == Client CPU == Server CPU

Throughput (Gbps)

Linux eBPF VPP

Dataplane

15%

10%

5%

0%

CPU consumption

23

Wireguard benchmarks

Wireguard HTTP RPS tests

wrk requests/s (1000s)

B kRPS == wrk cpu nginx cpu
400

300

200

100

Avg latency: 12ms Avg latency: 25ms Avg latency: 4.4ms

Linux VPP interrupt VPP polling

Wrk <-> nginx wireguard latency tests, 600B requests, using Service IP

100

CPU consumption (%), 100% = All CPUs

24

Asynchronous IPsec encryption

e VPP IPsec improvements contributed by Intel
o (Crypto operations are processed asynchronously by workers
independently of packet I/0

o More details in Fan Zhang talk later

e Benchmark:
o One worker dedicated to I/0O, one dedicated to crypto
o Iperf single flow throughput measurement

o Current bottleneck is I/0O worker

Asynchronous IPsec benchmarks

Encryption throughput
B Throughput == Client CPU Server CPU
15

Throughput (Gbps)

Linux eBPF VPP VPP IPsec VPP async IPsec

Dataplane

20%

15%

10%

5%

0%

CPU consumption

26

Improved interrupt handling

e Before:
o Interrupts delivered to main thread
o Workers check triggered interrupts every 100us
o sleep if there is nothing to do
o Now:
o Interrupts delivered directly to the workers
e [Xxpectations:
o Reduced latency

o Reduced CPU consumption

Interrupt mode benchmarks

Setup: iperf client « tun — vpp « avf—avf — vpp « tun — iperf server

VPP CPU consumption in interrupt mode
@ Throughput == CPU Usage total

500.00%
34.3

2105100%

2651007%

235100%

Throughput (Gbps)

VPP poll VPP poll v2 VPP interrupt VPP int v2

500.00%

400.00%

300.00%

200.00%

100.00%

0.00%

1CPU

Total VPP CPU usage (%), 100%

28

Acknowledgements

Many thanks to:
e The FD.io VPP community for their continued support and contributions

e The Calico team for their great support and feedback

Wrapping up

e Upcoming features:
o Maglev load balancing
o QOperator integration
o (Calico GA»)

e Join the Calico/VPP slack to stay up to date!
o https://calicousers.slack.com/archives/C017220EXU]

e Check out our docs if you'd like to learn more or try it out:

o https://github.com/projectcalico/vpp-dataplane/wiki

30

https://calicousers.slack.com/archives/C017220EXU1
https://github.com/projectcalico/vpp-dataplane/wiki

References

e (alico: https://www.projectcalico.org/
e FD.io/VPP: hittps://fd.io/

o Continuous performance testing:

https://docs.fd.io/csit/master/trending/introduction/dashboard.html

e (alico dataplane driver for VPP:

o Code: https://github.com/projectcalico/vpp-dataplane

o Doc: https://github.com/projectcalico/vpp-dataplane/wiki

o Slack channel: https://calicousers.slack.com/archives/C017220EXU]
e 40Gbps pod-to-pod IPSec for Calico with VPP:
o https://medium.com/fd-io-vpp/getting-to-40g-encrypted-container-

networking-with-calico-vpp-on-commodity-hardware-d7144e52659a a

https://www.projectcalico.org/
https://fd.io/
https://docs.fd.io/csit/master/trending/introduction/dashboard.html
https://github.com/projectcalico/vpp-dataplane
https://github.com/projectcalico/vpp-dataplane/wiki
https://calicousers.slack.com/archives/C017220EXU1
https://medium.com/fd-io-vpp/getting-to-40g-encrypted-container-networking-with-calico-vpp-on-commodity-hardware-d7144e52659a

