
Slide: 1Copyright © 2013 AdaCore

Joffrey Huguet

Adding contracts to the GCC GNAT Ada standard
libraries

Slide: 2Copyright © 2013 AdaCore

• Ada and SPARK
• Context
• Adding contracts to the GCC GNAT Ada Standard libraries

– Model global effects

– Protect from run-time errors

– Add complete contracts

• Related works

Contents

Slide: 3Copyright © 2013 AdaCore

Ada and SPARK

Slide: 4Copyright © 2013 AdaCore

• General purpose language, first released in 1983

Ada and SPARK - The Ada Language

Slide: 5Copyright © 2013 AdaCore

• General purpose language, first released in 1983

• Pascal-like syntax

Ada and SPARK - The Ada Language

Slide: 6Copyright © 2013 AdaCore

• General purpose language, first released in 1983

• Pascal-like syntax

• Strongly typed, with type constraints

Ada and SPARK - The Ada Language

Slide: 7Copyright © 2013 AdaCore

• General purpose language, first released in 1983

• Pascal-like syntax

• Strongly typed, with type constraints

• Checks introduced at runtime
… …

Ada and SPARK - The Ada Language

Slide: 8Copyright © 2013 AdaCore

• Pre and postconditions for subprograms

Ada and SPARK - Contract-based programming in Ada

Slide: 9Copyright © 2013 AdaCore

• Pre and postconditions for subprograms

• Strong and weak type invariants

Ada and SPARK - Contract-based programming in Ada

Slide: 10Copyright © 2013 AdaCore

• Pre and postconditions for subprograms

• Strong and weak type invariants

• Contracts checked at runtime when assertions are enabled

Ada and SPARK - Contract-based programming in Ada

Slide: 11Copyright © 2013 AdaCore

SPARK:

• Verifies formally absence of run-time errors and contracts

Ada and SPARK - Formal Verification of Ada

Slide: 12Copyright © 2013 AdaCore

SPARK:

• Verifies formally absence of run-time errors and contracts

• Uses deductive verification

Ada and SPARK - Formal Verification of Ada

SPARK
Code + Contracts GNATprove Mathematical

Formulas
Automatic
Provers

Proof
Results

Slide: 13Copyright © 2013 AdaCore

Context

Slide: 14Copyright © 2013 AdaCore

Context

• Analysis is modular; each subprogram is analyzed separately, trusting the
contracts of called subprograms

• When using unannotated subprograms, the analysis is weakened

Slide: 15Copyright © 2013 AdaCore

Context

• Analysis is modular; each subprogram is analyzed separately, trusting the
contracts of called subprograms

• When using unannotated subprograms, the analysis is weakened

Example:

Using and in proof

Have subprograms from these libraries really no effect on global items? Can we be more
precise about their effects?

Slide: 16Copyright © 2013 AdaCore

Context

• Analysis is modular; each subprogram is analyzed separately, trusting the
contracts of called subprograms

• When using unannotated subprograms, the analysis is weakened

Example:

Using and in proof

Have subprograms from these libraries really no effect on global items? Can we be more
precise about their effects?

→ We need to annotate the subprograms to have correct assumptions

Slide: 17Copyright © 2013 AdaCore

Model global effects of subprograms

Slide: 18Copyright © 2013 AdaCore

Subprograms from actually have
no effect on global items

Model global effects -

Slide: 19Copyright © 2013 AdaCore

Subprograms from actually have
no effect on global items

Adding the Global annotations removes the previous warnings

Model global effects -

Slide: 20Copyright © 2013 AdaCore

However, subprograms from Ada.Text_IO have an effect on the memory
and file system, but no global variable represents the file system

Model global effects -

Slide: 21Copyright © 2013 AdaCore

However, subprograms from Ada.Text_IO have an effect on the memory
and file system, but no global variable represents the file system

One solution: create a virtual object to represent the file system

…

…

Model global effects -

Slide: 22Copyright © 2013 AdaCore

However, subprograms from Ada.Text_IO have an effect on the memory
and file system, but no global variable represents the file system

One solution: create a virtual object to represent the file system

…

…

This way, we are able to model the effects of subprograms on the file system; the
warnings are removed and the assumptions are correct.

Model global effects -

Slide: 23Copyright © 2013 AdaCore

Protect from run-time errors

Slide: 24Copyright © 2013 AdaCore

Protect from run-time errors - Ada Reference Manual

The Ada Reference Manual states:

Slide: 25Copyright © 2013 AdaCore

Protect from run-time errors - Ada Reference Manual

The Ada Reference Manual states:

The following code fails at runtime:

But SPARK doesn’t say anything about it!

Slide: 26Copyright © 2013 AdaCore

Add a precondition:

Protect from run-time errors - Adding preconditions

Slide: 27Copyright © 2013 AdaCore

Add a precondition:

Re-run the proof:

Now SPARK detects that the parameters don’t satisfy the precondition

Protect from run-time errors - Adding preconditions

Slide: 28Copyright © 2013 AdaCore

Another extract from the Reference Manual:

Protect from run-time errors - Second example

Slide: 29Copyright © 2013 AdaCore

Let’s add preconditions…

Protect from run-time errors - Second example

Slide: 30Copyright © 2013 AdaCore

And try:

Protect from run-time errors - Second example

Slide: 31Copyright © 2013 AdaCore

And try:

Preconditions are not enough to prove the correct usage of the library:

Protect from run-time errors - Second example

Slide: 32Copyright © 2013 AdaCore

Let’s add more contracts:

Protect from run-time errors - Add more contracts

Slide: 33Copyright © 2013 AdaCore

And re-run the proof:

Now we are able to prove when won’t be raised at run-time.

Protect from run-time errors - And try them out

Slide: 34Copyright © 2013 AdaCore

And re-run the proof:

Now we are able to prove when won’t be raised at run-time.
However, this is not the only error:

• is related to modes (, , …)
• is raised when the file does not exist on the file system
• is raised when a file terminator is read in a procedure
• is related to the external environment

Protect from run-time errors - And try them out

Slide: 35Copyright © 2013 AdaCore

Add complete contracts to subprograms

Slide: 36Copyright © 2013 AdaCore

Add complete contracts - Going further...

Take the example with string handling again:

An assertion has been added after the call to verify that Str_2 is equal to “abcd”
after the call.

Slide: 37Copyright © 2013 AdaCore

Add complete contracts - Going further...

Take the example with string handling again:

An assertion has been added after the call to verify that Str_2 is equal to “abcd”
after the call.

But it is not proved:

Slide: 38Copyright © 2013 AdaCore

Indeed, we don’t have any information on Str after the call to Insert:

Add complete contracts - Going further...

Slide: 39Copyright © 2013 AdaCore

Indeed, we don’t have any information on Str after the call to Insert:

The Reference Manual states:

Add complete contracts - Going further...

Slide: 40Copyright © 2013 AdaCore

We need to reflect that through a postcondition:

Add complete contracts - Add postconditions

Slide: 41Copyright © 2013 AdaCore

We need to reflect that through a postcondition:

Add complete contracts - Add postconditions

Slide: 42Copyright © 2013 AdaCore

We need to reflect that through a postcondition:

Add complete contracts - Add postconditions

Slide: 43Copyright © 2013 AdaCore

We need to reflect that through a postcondition:

Add complete contracts - Add postconditions

Slide: 44Copyright © 2013 AdaCore

And now the assertion is proved:

The library provides different kinds of operations on
Strings:

• Search subprograms
• String translations
• String transformations
• String selectors
• String constructors

Add complete contracts - Results

Slide: 45Copyright © 2013 AdaCore

Related works

Slide: 46Copyright © 2013 AdaCore

Related works - Projects

On standard libraries:

• C standard libraries:
– annotated header files packaged with Frama-C

– external work on annotating header files done by GrammarTech

• Java standard libraries:
– some libraries are annotated for OpenJML

• Community participation: annotationsforall.org

http://annotationsforall.org

Slide: 47Copyright © 2013 AdaCore

Related works - Projects

On standard libraries:

• C standard libraries:
– annotated header files packaged with Frama-C

– external work on annotating header files done by GrammarTech

• Java standard libraries:
– some libraries are annotated for OpenJML

• Community participation: annotationsforall.org

On third-party libraries:

• SPARK binding of TweetNaCl and Libsodium libraries
 github.com/isavialard/TweetNaCl_binding

 github.com/isavialard/Libsodium_binding

• SPARK binding and partial verification of CycloneTCP

 github.com/AdaCore/Http_Cyclone

http://annotationsforall.org
https://github.com/isavialard/TweetNaCl_binding
https://github.com/isavialard/Libsodium_binding
https://github.com/AdaCore/Http_Cyclone

Slide: 48Copyright © 2013 AdaCore

Related works - Planned next steps

• Specifying more GCC GNAT Ada standard libraries

• Verifying a given implementation of the library

Slide: 49Copyright © 2013 AdaCore

• There are different levels of detail

• These levels can serve for different purposes

• This is a substantial effort

Conclusion

Slide: 50Copyright © 2013 AdaCore

• Blogpost on annotating third-party libraries
 blog.adacore.com/secure-use-of-cryptographic-libraries-spark-binding-for-libsodium

• Online Ada and SPARK Courses
 learn.adacore.com

• Download page for the SPARK toolset
 adacore.com/download

• Source code of the SPARK proof tool
 github.com/AdaCore/spark2014

Online resources

https://blog.adacore.com/secure-use-of-cryptographic-libraries-spark-binding-for-libsodium
https://learn.adacore.com
https://www.adacore.com/download
https://github.com/AdaCore/spark2014

