Adding contracts to the GCC GNAT Ada standard
libraries

Joffrey Huguet

Copyright © 2013 AdaCore Slide: 1

« Ada and SPARK

« Context

* Adding contracts to the GCC GNAT Ada Standard libraries
— Model global effects
— Protect from run-time errors

— Add complete contracts

 Related works

Ada and SPARK

Copyright © 2013 AdaCore Slide: 3

Ada and SPARK - The Ada Language

» General purpose language, first released in 1983

Ada and SPARK - The Ada Language

» General purpose language, first released in 1983

declare

Y : Integer;
begin

Y :=1;
end;

* Pascal-like syntax

Ada and SPARK - The Ada Language

» General purpose language, first released in 1983

declare

Y : Integer;
begin

Y :=1;
end;

* Pascal-like syntax

» Strongly typed, with type constraints

type Small_Int is range -100 .. 100;
subtype Small Nat is Small Int range © .. 100;
type Small Int_Arr is array (1 .. 10) of Small Int;

Ada and SPARK - The Ada Language

» General purpose language, first released in 1983

declare

Y : Integer;
begin

Y :=1;
end;

* Pascal-like syntax

» Strongly typed, with type constraints

type Small_Int is range -100 .. 100;
subtype Small Nat is Small Int range © .. 100;
type Small Int_Arr is array (1 .. 10) of Small Int;

» Checks introduced at runtime
X : Small _Int := ...; A : Small_Int_Arr := ...;
Y : Small Nat := X; X 1= A (Y);
-- range check -- 1index check

Ada and SPARK - Contract-based programming in Ada

» Pre and postconditions for subprograms
procedure Increment (X : in out Integer) with
Pre => X < Integer’Last,
Post => X > X’01d;

Ada and SPARK - Contract-based programming in Ada

* Pre and postconditions for subprograms

procedure Increment (X : in out Integer) with
Pre => X < Integer’Llast,
Post => X > X’01d;

« Strong and weak type invariants
subtype Sorted_Arr is Small_Int_Arr with
Dynamic_Predicate =>
(for @all I in 1 .. 9 => Sorted Arr (I) < Sorted Arr (I + 1));

Ada and SPARK - Contract-based programming in Ada

* Pre and postconditions for subprograms

procedure Increment (X : in out Integer) with
Pre => X < Integer’Llast,
Post => X > X’01d;

« Strong and weak type invariants

subtype Sorted_Arr is Small_Int_Arr with
Dynamic_Predicate =>
(for @all I in 1 .. 9 => Sorted Arr (I) < Sorted Arr (I + 1));

* Contracts checked at runtime when assertions are enabled

Ada and SPARK - Formal Verification of Ada

SPARK:

» Verifies formally absence of run-time errors and contracts
A : Sorted Arr := (0, 1, 2, 3, 4, 5, 6, 7, 8, 9);

-- predicate check proved

X : Integer := 15;
Increment (X);

-- precondition proved

Ada and SPARK - Formal Verification of Ada

SPARK:

» Verifies formally absence of run-time errors and contracts
A : Sorted Arr := (0, 1, 2, 3, 4, 5, 6, 7, 8, 9);

-- predicate check proved

X : Integer := 15;
Increment (X);

-- precondition proved

e Uses deductive verification

SPARK Mathematical Automatic Proof
Code + Contracts R GNATprove Formulas — Provers Results

Context

Copyright © 2013 AdaCore Slide: 13

« Analysis is modular; each subprogram is analyzed separately, trusting the
contracts of called subprograms

* When using unannotated subprograms, the analysis is weakened

« Analysis is modular; each subprogram is analyzed separately, trusting the
contracts of called subprograms

* When using unannotated subprograms, the analysis is weakened

Example:

Using Ada.Strings.Unbounded and Ada.Text_IO in proof

p.adb:9:15: warning : assuming "Append" has no effect on global items
p.adb:9:15: warning : no Global contract available for "Append"
p.adb:10:21: warning : assuming "Put_Line" has no effect on global items

p.adb:10:21: warning : no Global contract available for "Put_Line"

Have subprograms from these libraries really no effect on global items? Can we be more
precise about their effects?

« Analysis is modular; each subprogram is analyzed separately, trusting the
contracts of called subprograms

* When using unannotated subprograms, the analysis is weakened

Example:

Using Ada.Strings.Unbounded and Ada.Text_IO in proof

p.adb:9:15: warning : assuming "Append" has no effect on global items
p.adb:9:15: warning : no Global contract available for "Append"
p.adb:10:21: warning : assuming "Put_Line" has no effect on global items

p.adb:10:21: warning : no Global contract available for "Put_Line"

Have subprograms from these libraries really no effect on global items? Can we be more
precise about their effects?

— We need to annotate the subprograms to have correct assumptions

Model global effects of subprograms

Copyright © 2013 AdaCore Slide: 17

Model global effects - Ada.Strings.Unbounded

Subprograms from Ada.Strings.Unbounded actually have
no effect on global items

Model global effects - Ada.Strings.Unbounded

Subprograms from Ada.Strings.Unbounded actually have

no effect on global items

procedure Append
(Source : in out Unbounded_String;
New_Item : Unbounded_String)

with Global => null;

Adding the Global annotations removes the previous warnings

Model global effects - Ada.Text_IO

However, subprograms from Ada.Text 1O have an effect on the memory
and file system, but no global variable represents the file system

Model global effects - Ada.Text_IO

However, subprograms from Ada.Text 1O have an effect on the memory
and file system, but no global variable represents the file system

One solution: create a virtual object to represent the file system

package Ada.Text_IO with
Abstract_State => File_System

is

procedure Get (File : File Type; Item : out String) with
Global => (In_Out => File_System);

Model global effects - Ada.Text_IO

However, subprograms from Ada.Text 1O have an effect on the memory
and file system, but no global variable represents the file system

One solution: create a virtual object to represent the file system

package Ada.Text_IO with
Abstract_State => File_System

is

procedure Get (File : File Type; Item : out String) with
Global => (In_Out => File_System);

This way, we are able to model the effects of subprograms on the file system; the
warnings are removed and the assumptions are correct.

Protect from run-time errors

Copyright © 2013 AdaCore Slide: 23

Protect from run-time errors - Ada Reference Manual

The Ada Reference Manual states:

77 function Insert (Source : in String;
Before : in Positive;
New_Item : in String)
return String;
78/3|Propagates Index Error if Before is not in Source'First .. Source'lLast+l} otherwise, returns
Source(Source'First..Before-1) & New_Item & Source(Before..Source'lLast), but with lower bound 1.

Protect from run-time errors - Ada Reference Manual

The Ada Reference Manual states:

77 function Insert (Source : in String;
Before : in Positive;
New_Item : in String)
return String;
78/3|Propagates Index Error if Before is not in Source'First .. Source'lLast+l} otherwise, returns
Source(Source'First..Before-1) & New_Item & Source(Before..Source'lLast), but with lower bound 1.

The following code fails at runtime:
1 procedure Main with SPARK_Mode is

2 Str_1 : String := “abc”; -- Source’lLast = 3

3 Str 2 : String (1 .. 4);

4 begin

5 Str_2 := Insert (Str_1, 5, “d”); -- 5 1is not in 1 .. 4

6 end Main;

But SPARK doesn’t say anything about it!

Protect from run-time errors - Adding preconditions

Add a precondition:

function Insert
(Source : String;
Before : Positive;
New_Item : String) return String
with
Pre => Before - 1 in Source'First - 1 .. Source'last

and then Source'length <= Natural'Last - New_Item'Length;

Protect from run-time errors - Adding preconditions

Add a precondition:

function Insert
(Source : String;
Before : Positive;
New_Item : String) return String
with
Pre => Before - 1 in Source'First - 1 .. Source'last

and then Source'length <= Natural'Last - New_Item'Length;

Re-run the proof:

main.adb:5:16: medium: precondition might fail
5 | Str_2 := Insert (Str_1, 5, "d");

| A o~

Now SPARK detects that the parameters don’t satisfy the precondition

Protect from run-time errors - Second example

Another extract from the Reference Manual:

6 procedure Open(File : in out File Type;
Mode : in File_ Mode;
Name : in String;

Form : in String := "");

8 [The exception Status_Error is propagated if the given file is already open.|The exception Name_Error is
propagated if the string given as Name does not allow the identification of an external file; in particular,
this exception is propagated if no external file with the given name exists. The exception Use_Error is
propagated if, for the specified mode, the external environment does not support opening for an external file
with the given name (in the absence of Name_Error) and form.

12 procedure Delete(File : in out File_Type);

14|The exception Status_Error is propagated if the given file is not open.|The exception Use_Error is
propagated if deletion of the external file is not supported by the external environment.

27 function Is_Open(File : in File_Type) return Boolean;

28/3 Returns True if the file is open (that is, if it is associated with an external file); otherwise, returns
False.

Protect from run-time errors - Second example

Let’s add preconditions...

procedure Open
(File : in out File_Type;
Mode : File Mode;

Name : String;

Form : String := "")
with
Pre => not Is Open (File),

Global => (In_Out => File_System);

procedure Delete (File : in out File_Type) with
Pre => Is Open (File),
Global => (In_Out => File System);

Protect from run-time errors - Second example

And try:

1 procedure Main with SPARK_ Mode is

2 File 1, File 2 : File Type;

3 begin

4 Delete (File_1); -- wrong usage; File_1 is not open
5 Open (File_2, In_File, “hello_world.txt”);

6 Delete (File_2);

7 end Main;

main.adb:4:04: medium: precondition might fail, cannot prove Is Open (File)

Protect from run-time errors - Second example

And try:

1 procedure Main with SPARK_ Mode is

2 File 1, File 2 : File Type;

3 begin

4 Delete (File_1); -- wrong usage; File_1 is not open
5 Open (File_2, In_File, “hello_world.txt”);

6 Delete (File_2);

7 end Main;

Preconditions are not enough to prove the correct usage of the library:

main.adb:4:04: medium: precondition might fail, cannot prove Is Open (File)
main.adb:4:12: high: "File_ 1" is not initialized

main.adb:5:04: medium: precondition might fail, cannot prove not Is Open (File)
main.adb:5:10: high: "File_2" is not initialized

main.adb:6:04: medium: precondition might fail, cannot prove Is Open (File)

Protect from run-time errors - Add more contracts

Let’s add more contracts:

type File Type is limited private with
Default_Initial Condition => (not Is Open (File_Type));

procedure Open
(File : in out File Type;
Mode : File_ Mode;

Name : String;

Form : String := "")
with
Pre => not Is Open (File),

Post => Is Open (File),
Global => (In_Out => File_System);

procedure Delete (File : in out File_ Type) with
Pre => Is Open (File),
Post => not Is Open (File),
Global => (In_Out => File_System);

Protect from run-time errors - And try them out

And re-run the proof:

main.adb:2:04: info: initialization of "File 1" proved

main.adb:2:12: info: initialization of "File_ 2" proved

main.adb:4:04: medium: precondition might fail, cannot prove Is Open (File_ 1)
main.adb:5:04: info: precondition proved

main.adb:6:04: info: precondition proved

Now we are able to prove when Status_Error won't be raised at run-time.

Protect from run-time errors - And try them out

And re-run the proof:

main.

main.

main

main.

main.

adb:2:04:
adb:2:12:
.adb:4:04:
adb:5:04:
adb:6:04:

info: initialization of "File 1" proved

info: initialization of "File 2" proved

medium: precondition might fail, cannot prove Is Open (File)
info: precondition proved

info: precondition proved

Now we are able to prove when Status_Error won't be raised at run-time.

However, this is not the only error:

Mode_Error is related to modes (In_File, Out_File, ...)
Name_Error is raised when the file does not exist on the file system
End_Error is raised when a file terminator is read in a procedure
Use_ Error is related to the external environment

Add complete contracts to subprograms

Copyright © 2013 AdaCore Slide: 35

Add complete contracts - Going further...

Take the example with string handling again:

1 procedure Main with SPARK Mode is
2 Str_1 : String := “abc”;

3 Str 2 : String (1 .. 4);

4 begin

5 Str 2 := Insert (Str_ 1, 4, “d”);
6 pragma Assert (Str_2 = “abcd”);
7 end Main;

An assertion has been added after the call to verify that Str_2 is equal to “abcd”
after the call.

Add complete contracts - Going further...

Take the example with string handling again:

1 procedure Main with SPARK Mode is
2 Str_1 : String := “abc”;

3 Str 2 : String (1 .. 4);

4 begin

5 Str 2 := Insert (Str_ 1, 4, “d”);
6 pragma Assert (Str_2 = “abcd”);
7 end Main;

An assertion has been added after the call to verify that Str_2 is equal to “abcd”
after the call.

But it is not proved:

main.adb:3:04: info: initialization of "Str_2" proved

main.adb:5:13: info: precondition proved

main.adb:5:13: medium: length check might fail

main.adb:6:19: medium: assertion might fail, cannot prove Str_2 = "abcd"

Add complete contracts - Going further...

Indeed, we don’t have any information on Str after the call to Insert:

function Insert
(Source : String;
Before : Positive;
New_Item : String) return String
with
Pre => Before - 1 in Source'First - 1 .. Source'lLast

and then Source'lLength <= Natural'lLast - New_Item'Length;

Add complete contracts - Going further...

Indeed, we don’t have any information on Str after the call to Insert:

function Insert
(Source : String;
Before : Positive;
New_Item : String) return String
with
Pre => Before - 1 in Source'First - 1 .. Source'lLast

and then Source'lLength <= Natural'lLast - New_Item'Length;

The Reference Manual states:

77 function Insert (Source : in String;
Before : in Positive;
New Item : in String)
return String;
78/3 Propagates Index_Error if Before is not in Source'First .. Source'last+1l; otherwise, returns
|Source(Source'First..Before—l) & New_Item & Source(Before..Source'last), but with lower bound 1.

Add complete contracts - Add postconditions

We need to reflect that through a postcondition:

Post =>
Insert'Result'First = 1
and then Insert'Result'Length = Source'lLength + New_Item'Length

Add complete contracts - Add postconditions

We need to reflect that through a postcondition:
Post =>
Insert'Result'First = 1
and then Insert'Result'Length = Source'lLength + New_Item'Length
and then
Insert'Result (1 .. Before - Source'First)

= Source (Source'First .. Before - 1)

Add complete contracts - Add postconditions

We need to reflect that through a postcondition:

Post =>
Insert'Result'First = 1
and then Insert'Result'Length = Source'lLength + New_Item'Length

and then
Insert'Result (1 .. Before - Source'First)
= Source (Source'First .. Before - 1)

and then

Insert'Result
(Before - Source'First + 1
. Before - Source'First + New_Item'Length)

= New_TItem

Add complete contracts - Add postconditions

We need to reflect that through a postcondition:

Post =>
Insert'Result'First = 1
and then Insert'Result'Length = Source'lLength + New_Item'Length

and then
Insert'Result (1 .. Before - Source'First)
= Source (Source'First .. Before - 1)

and then

Insert'Result
(Before - Source'First + 1
. Before - Source'First + New_Item'Length)
= New_TItem
and then
(if Before - 1 < Source'last
then
Insert'Result
(Before - Source'First + New_Item'Length + 1
. Insert'Result’'Last)

= Source (Before .. Source'lLast))

Add complete contracts - Results

And now the assertion is proved:

main.adb:3:04: info: initialization of "Str_2" proved
main.adb:5:13: info: precondition proved
main.adb:5:13: info: length check proved

main.adb:6:19: info: assertion proved

The library Ada.Strings.Fixed provides different kinds of operations on
Strings:

« Search subprograms

« String translations

« String transformations

« String selectors

« String constructors

Related works

Copyright © 2013 AdaCore Slide: 45

Related works - Projects

On standard libraries:

e C standard libraries:

— annotated header files packaged with Frama-C

— external work on annotating header files done by GrammarTech

 Java standard libraries:

— some libraries are annotated for OpenJML

* Community participation:

http://annotationsforall.org

Related works - Projects

On standard libraries:

e C standard libraries:

— annotated header files packaged with Frama-C

— external work on annotating header files done by GrammarTech

 Java standard libraries:

— some libraries are annotated for OpenJML
* Community participation:

On third-party libraries:
+ SPARK binding of TweetNaCl and Libsodium libraries

+ SPARK binding and partial verification of CycloneTCP

http://annotationsforall.org
https://github.com/isavialard/TweetNaCl_binding
https://github.com/isavialard/Libsodium_binding
https://github.com/AdaCore/Http_Cyclone

Related works - Planned next steps

» Specifying more GCC GNAT Ada standard libraries

» Verifying a given implementation of the library

Conclusion

« There are different levels of detall
» These levels can serve for different purposes

 This is a substantial effort

Online resources

« Blogpost on annotating third-party libraries
* Online Ada and SPARK Courses
» Download page for the SPARK toolset

» Source code of the SPARK proof tool

https://blog.adacore.com/secure-use-of-cryptographic-libraries-spark-binding-for-libsodium
https://learn.adacore.com
https://www.adacore.com/download
https://github.com/AdaCore/spark2014

