
Rewrite Your Complex MySQL Queries for
Better Performance

Øystein Grøvlen
Senior Staff Engineer

Alibaba Cloud

Introduction to Subqueries

Derived Tables

Scalar Subqueries

IN/EXISTS subqueries

Use Window Functions

2

Optimizer Hints

Types of Subqueries

• Scalar subqueries
• Returns maximum one row

• May be used most places where a value can be used

• Examples:
SELECT a1, (SELECT AVG(b2) FROM t2) FROM t1;

SELECT a1 FROM t1 WHERE a1 < (SELECT AVG(b2) FROM t2);

• Non-scalar subqueries
• May return multiple rows

• Examples:
SELECT b1, avg_b2 FROM (SELECT b1, AVG(b2) avg_b2 FROM t2 GROUP BY b1) dt;

SELECT a1 FROM t1 WHERE a1 IN (SELECT b2 FROM t2);

3

Derived Table

Correlated Subqueries

• Subquery refers columns of outer query
• Examples

SELECT a1, (SELECT b2 FROM t2 WHERE b1 = t1.a1) FROM t1;

SELECT a1 FROM t1 WHERE a1 < (SELECT AVG(b2) FROM t2 WHERE b1 = t1.a1);

SELECT a1 FROM t1 WHERE NOT EXISTS (SELECT 1 FROM t2 WHERE b1 = t1.a1);

SELECT t1.a1, dt.b2 FROM t1, LATERAL (SELECT b2 FROM t2 WHERE b2 = t1.a1) dt;

4

New in MySQL 8.0.14

Nested Subqueries

SELECT s_name, s_address
FROM supplier, nation
WHERE s_suppkey IN (

SELECT ps_suppkey
FROM partsupp
WHERE ps_partkey IN (

SELECT p_partkey FROM part WHERE p_name LIKE 'dodger%’)
AND ps_availqty > (

SELECT 0.5 * SUM(l_quantity)
FROM lineitem
WHERE l_partkey = ps_partkey AND l_suppkey = ps_suppkey

AND l_shipdate >= '1994-01-01’
AND l_shipdate < DATE_ADD('1994-01-01', INTERVAL '1' YEAR))

)
AND n_name = 'INDIA’

ORDER BY s_name;

5

TPC-H Query 20: Potential Part Promotion Query

• Naïve approach

• Execute subquery for each row of the outer query

• May use indexes to speed up correlated queries

• Example: SELECT a1 FROM t1 WHERE a1 < (SELECT AVG(b2) FROM t2 WHERE t2.b1 = t1.a1);

• Optimizations / Query transformations

• Merge subquery into outer query

• Materialization of non-correlated subqueries

• Semi-join/Anti-join for (NOT) IN/EXISTS

• Rewrite to MIN/MAX for queries like <CompOp> ALL/ANY (SELECT …)

SELECT a1 FROM t1 WHERE a1 > ALL (SELECT b2 FROM t2);

• New query transformations in 8.0

Execution of Subqueries

6

Introduction to Subqueries

Derived Tables

Scalar Subqueries

IN/EXISTS subqueries

Use Window Functions

7

Optimizer Hints

• Materialization
SELECT b1, avg_b2 FROM (SELECT b1, AVG(b2) avg_b2 FROM t2 GROUP BY b1) dt;

1. Store the result of the subquery in a temporary table (may create indexes on temporary table if useful)
CREATE TEMPORARY TABLE dt AS (SELECT b1, AVG(b2) avg_b2 FROM t2 GROUP BY b1);

2. Execute the main query using the temporary table

SELECT b1, avg_b2 FROM AS dt;
DROP TEMPORARY TABLE dt;

• Merge into outer query (MySQL 5.7)
• Handle derived tables the same way as views

• Not supported for queries that contain aggregation functions, GROUP BY, LIMIT, UNION, DISTINCT,
…

Execution of Derived Tables

8

mysql> SELECT AVG(o_totalprice) FROM
(SELECT * FROM orders ORDER BY o_totalprice DESC LIMIT 100000) dt;

+-------------------+
| AVG(o_totalprice) |
+-------------------+
| 398185.986158 |
+-------------------+
1 row in set (24.65 sec)

mysql> SELECT AVG(o_totalprice) FROM
(SELECT o_totalprice FROM orders ORDER BY o_totalprice DESC LIMIT 100000) dt;

+-------------------+
| AVG(o_totalprice) |
+-------------------+
| 398185.986158 |
+-------------------+
1 row in set (8.18 sec)

Materialized Derived Tables

9

Do not SELECT more data that needed by outer query

SELECT b1, avg_b2
FROM (SELECT b1, AVG(b2) avg_b2 FROM t2 GROUP BY b1) dt
WHERE b1 < 10;

SELECT b1, avg_b2
FROM (SELECT b1, AVG(b2) avg_b2 FROM t2 WHERE b1 < 10 GROUP BY b1) dt;

SELECT b1, avg_b2
FROM (SELECT b1, AVG(b2) avg_b2 FROM t2 GROUP BY b1) dt
WHERE avg_b2 > 90;

SELECT b1, avg_b2
FROM (SELECT b1, AVG(b2) avg_b2 FROM t2 GROUP BY b1 HAVING avg_b2 > 90) dt;

WL#8084: Condition pushdown for materialized derived tables (MySQL 8.0.22)

Materialized Derived Tables

10

Move conditions into derived table

EXPLAIN FORMAT=TREE SELECT b1, avg_b2
FROM (SELECT b1, AVG(b2) avg_b2 FROM t2 GROUP BY b1) dt
WHERE b1 < 10;

8.0.21 (1.22 ms):
-> Filter: (dt.b1 < 10)

-> Table scan on dt
-> Materialize

-> Table scan on <temporary>
-> Aggregate using temporary table

-> Table scan on t2 (cost=103.65 rows=1024)

8.0.22 (0.85 ms):
-> Table scan on dt (cost=40.86 rows=341)

-> Materialize
-> Table scan on <temporary>

-> Aggregate using temporary table
-> Filter: (t2.b1 < 10) (cost=103.65 rows=341)

-> Table scan on t2 (cost=103.65 rows=1024)

Materialized Derived Tables

11

MySQL 8.0.22: Condition pushdown for materialized derived tables (and views)

SELECT *
FROM part p1
JOIN (SELECT * FROM part WHERE p_type LIKE '%STEEL%') p2 ON p1.p_name = p2.p_name
WHERE p1.p_type LIKE '%COPPER%’;

Merged Derived Tables

12

Not always optimal

MySQL 5.5 MySQL 5.6 MySQL 5.7
0.4 seconds 6 minutes

• MySQL 5.7
• Rewrite derived table so it can not be merged

SELECT *
FROM part p1
JOIN (SELECT * FROM part WHERE p_type LIKE '%STEEL%' LIMIT 1000000) p2 ON p1.p_name=p2.p_name
WHERE p1.p_type LIKE '%COPPER%';

• MySQL 8.0
• Use NO_MERGE hint

SELECT /*+ NO_MERGE(p2) */ *
FROM part p1
JOIN (SELECT * FROM part WHERE p_type LIKE '%STEEL%') p2 ON p1.p_name = p2.p_name
WHERE p1.p_type LIKE '%COPPER%’;

• MySQL 8.0.18: Not necessary since using hash join is 35% faster.

How to Prevent Merging of Derived Tables

13

• Derived tables:
SELECT *
FROM (SELECT a, b, SUM(c) s FROM t1 GROUP BY a, b) AS d1
JOIN (SELECT a, b, SUM(c) s FROM t1 GROUP BY a, b) AS d2 ON d1.b = d2.a;

• Common Table Expressions (CTE):
WITH d AS (SELECT a, b, SUM(c) s FROM t1 GROUP BY a, b)
SELECT * FROM d AS d1 JOIN d AS d2 ON d1.b = d2.a

• Improved Readability
• CTE is only materialized once

Use Common Table Expressions

14

MySQL 8.0

CREATE VIEW revenue0(supplier_no , total_revenue) AS
SELECT l_suppkey, SUM(l_extendedprice * (1 - l_discount))
FROM lineitem
WHERE l_shipdate >= '1996-07-01’

AND l_shipdate < DATE_ADD('1996-07-01', INTERVAL '90' DAY)
GROUP BY l_suppkey;

SELECT s_suppkey, s_name, s_address, s_phone, total_revenue
FROM supplier, revenue0
WHERE s_suppkey = supplier_no

AND total_revenue = (SELECT MAX(total_revenue) FROM revenue0)
ORDER BY s_suppkey;

WITH revenue0 AS (…)
SELECT s_suppkey, s_name, s_address, s_phone, total_revenue
FROM supplier, revenue0
WHERE s_suppkey = supplier_no

AND total_revenue = (SELECT MAX(total_revenue) FROM revenue0)
ORDER BY s_suppkey;

Better Performance with CTEs

15

TPC-H Query 15: Top Supplier Query

Introduction to Subqueries

Derived Tables

Scalar Subqueries

IN/EXISTS subqueries

Use Window Functions

16

Optimizer Hints

SELECT SUM(l_extendedprice) / 7.0 AS avg_yearly
FROM lineitem JOIN part ON p_partkey = l_partkey
WHERE p_mfgr = 'Manufacturer#1'

AND l_quantity
< (SELECT 0.2 * AVG(l_quantity) FROM lineitem WHERE l_partkey = p_partkey);

WITH pq(avg_qty, pk) AS (SELECT 0.2 * AVG(l_quantity), l_partkey
FROM lineitem GROUP BY l_partkey)

SELECT SUM(l_extendedprice) / 7.0 AS avg_yearly
FROM lineitem JOIN part ON p_partkey = l_partkey JOIN pq ON pq.pk = p_partkey
WHERE p_mfgr = 'Manufacturer#1' AND l_quantity < pq.avg_qty;

WITH pq(avg_qty, pk) AS (SELECT 0.2 * AVG(l_quantity), l_partkey
FROM lineitem JOIN part ON p_partkey = l_partkey
WHERE p_mfgr = 'Manufacturer#1' GROUP BY l_partkey)

SELECT SUM(l_extendedprice) / 7.0 AS avg_yearly
FROM lineitem JOIN pq ON pq.pk = l_partkey
WHERE l_quantity < pq.avg_qty;

Rewrite Scalar Subquery to Derived Table

17

Q1

Q2

Q3

(Or CTE in MySQL 8.0)

109.30

26.60

9.60

0

20

40

60

80

100

120

Q1 Q2 Q3

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Comparing Execution Times
Rewrite Scalar Subquery to Derived Table

18

0.63

22.61

0.13
0

10

20

30

Q1 Q2 Q3

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Not always optimal
Rewrite Scalar Subquery to Derived Table

19

SELECT SUM(l_extendedprice) / 7.0 AS avg_yearly
FROM lineitem JOIN part ON p_partkey = l_partkey
WHERE p_brand = 'Brand#11' and p_container = 'SM CAN'

AND l_quantity
< (SELECT 0.2 * AVG(l_quantity) FROM lineitem WHERE l_partkey = p_partkey);

Automatic Rewrite of Scalar Subqueries to Derived Tables

20

MySQL 8.0.21

• Only supported for non-correlated scalar subqueries
• Off by default, to enable:

SET optimizer_switch=‘subquery_to_derived=on’;
• Not cost-based, may give worse performance than scalar subqueries

Introduction to Subqueries

Derived Tables

Scalar Subqueries

IN/EXISTS subqueries

Use Window Functions

21

Optimizer Hints

SELECT o_orderdate, o_totalprice FROM orders

WHERE o_orderkey IN (SELECT l_orderkey FROM lineitem WHERE l_shipDate='1996-09-30');

• Semi-join
• Introduced in MySQL 5.6

• Inner Join + Duplicate removal

• Opens up for more optimal ”join orders”, may process inner tables before outer tables

• Can not be used if subquery contains UNION or aggregation

• Prefer IN over EXISTS
SELECT o_orderdate, o_totalprice FROM orders

WHERE EXISTS (SELECT 1 FROM lineitem WHERE l_shipDate='1996-09-30' AND o_orderkey = l_orderkey);

• MySQL 8.0.16: Automatic conversion from EXISTS to IN

IN-subqueries

22

Rewrite IN-Subquery to Derived Table

24

TPC-H Query 18: Large Volume Customer Query

Subquery SELECTs and GROUPs by l_orderkey, so it will not produce any duplicates:

SELECT c_name, c_custkey, o_orderkey, o_orderdate, o_totalprice, SUM(l_quantity)
FROM customer JOIN orders ON c_custkey = o_custkey

JOIN lineitem ON o_orderkey = l_orderkey
WHERE o_orderkey IN (SELECT l_orderkey FROM lineitem

GROUP BY l_orderkey HAVING SUM(l_quantity) > 313)
GROUP BY c_name, c_custkey, o_orderkey, o_orderdate, o_totalprice
ORDER BY o_totalprice DESC, o_orderdate LIMIT 100;

Since no duplicate removal is needed, we can rewrite to use INNER JOIN:

WITH l2 AS (SELECT l_orderkey FROM lineitem
GROUP BY l_orderkey HAVING SUM(l_quantity) > 313)

SELECT c_name, c_custkey, o_orderkey, o_orderdate, o_totalprice, SUM(l_quantity)
FROM customer JOIN orders ON c_custkey = o_custkey

JOIN lineitem ON o_orderkey = lineitem.l_orderkey
JOIN l2 ON o_orderkey = l2.l_orderkey

GROUP BY c_name, c_custkey, o_orderkey, o_orderdate, o_totalprice
ORDER BY o_totalprice DESC, o_orderdate LIMIT 100;

Rewrite IN-Subquery to Derived Table

25

Improved performance with JOIN

Introduction to Subqueries

Derived Tables

Scalar Subqueries

IN/EXISTS subqueries

Use Window Functions

26

Optimizer Hints

Use Window Functions Instead of Subqueries for Aggregation
TPC-H Query 17: Small-Quantity-Order Revenue Query

SELECT SUM(l_extendedprice) / 7.0 AS avg_yearly
FROM lineitem, part
WHERE p_partkey = l_partkey AND p_brand = 'Brand#11' AND p_container = 'SM CAN'

AND l_quantity
< (SELECT 0.2 * AVG(l_quantity) FROM lineitem WHERE l_partkey = p_partkey);

WITH win AS (
SELECT l_extendedprice, l_quantity,

AVG(l_quantity) OVER (PARTITION BY p_partkey) avg_l_quantity
FROM lineitem, part
WHERE p_partkey = l_partkey AND p_brand = 'Brand#11' AND p_container = 'SM CAN’

)
SELECT SUM(l_extendedprice) / 7.0 AS avg_yearly
FROM win
WHERE l_quantity < 0.2 * avg_l_quantity;

27

0

2

4

6

8

10

12

Q2 Q11 Q15 Q17

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Original Window function

Window Functions Instead of Subqueries for Aggregation

28

Introduction to Subqueries

Derived Tables

Scalar Subqueries

IN/EXISTS subqueries

Use Window Functions

29

Optimizer Hints

Optimizer Hints

30

• Syntax: SELECT /*+ hints */ ...

• Subquery hints:
• MERGE(), NO_MERGE(): Merge derived table/View/CTE? (MySQL 8.0)

• SEMIJOIN(), NO_SEMIJOIN(): Whether to use semi-join, and which strategy to (not) use

• SUBQUERY(): Which subquery strategy to use for non-correlated subqueries (Materialization or not)

• DERIVED_CONDITION_PUSHDOWN(),NO_DERIVED_CONDITION_PUSHDOWN() (MySQL 8.0.22)

• Other very useful hints:
• JOIN_PREFIX(), JOIN_ORDER(), JOIN_SUFFIX(): Affect join order (MySQL 8.0)

• INDEX(), NO_INDEX(): Which index to use (MySQL 8.0.20)

Query Rewrite Plugin

31

• Rewrite problematic queries without the need to make application changes
• Add hints

• Rewrite queries

• Add rewrite rules to table:
INSERT INTO query_rewrite.rewrite_rules (pattern, replacement) VALUES
("SELECT * FROM t1 WHERE a > ? AND b = ?",
"SELECT /*+ INDEX(a_idx) */ * FROM t1 WHERE a > ? AND b = ?");

• Pre- and post-parse query rewrite APIs
• Users can write their own plug-ins

Summary

32

• Do only select columns in derived table that will be used by outer query
• Push conditions into subqueries
• Be aware that sometimes the automatic merge of derived tables is not optimal
• MySQL 8.0: Use Common Table Expressions (CTEs) instead of derived tables.
• Scalar subqueries may be rewritten to derived tables, but will not always improve

performance.
• Prefer IN over EXISTS
• If semijoin does not apply, check if IN-subquery can be replaced by derived table.
• MySQL 8.0: Use window functions to avoid referring the same table twice.

Thank you

