
Reliably ReproducingReliably Reproducing
Kernel Data RacesKernel Data Races

From userland withFrom userland with
 LTP Fuzzy SyncLTP Fuzzy Sync

FOSDEM and SUSE Engineering summit 2021

https://richiejp.github.io/fuzzy-sync-pres-2021/https://richiejp.github.io/fuzzy-sync-pres-2021/

https://richiejp.github.io/fuzzy-sync-pres-2021/

What is a data race?What is a data race?
Informally and according to Richard Palethorpe.

•

•

•

•

•

It is also called a race condition.

It requires a computation which reads at least one variable from somewhere.

The result(s) of the computation must change depending on the value of the variable.

The value of the variable must change over time. Thus the result of the computation changes over

Only static, purely functional code has no data races.

However...However...
Usually if someone talks about a "data race" or "race condition" they are talking about a bug caused by
race.

DATA RACE

What do kernel data races typically look like?What do kernel data races typically look like?
A gross and degenerate simplification.

•

•

•

•

•

•

A block of code updates a memory pointer (Block A).

Another block reads a memory pointer (Block B).

The blocks may run concurrently.

Block A should only run after/before B to ensure the pointer value is valid for B.

The ordering of memory accesses has not been ensured in all scenarios.

Block B blows up when it dereferences a dodgy pointer.

However...However...

•

•

It is usually more complicated than that.

A whole bunch of conditions have to be met for the value A writes to blow up B.

KERNEL RACE

What is a reproducer?What is a reproducer?
And what is Fuzzy Sync for?

•

–

–

–

–

•

•

•

A reproducer is a program which triggers a particular bug in another program.

When a bug is fixed in the kernel, we can write an LTP test which reproduces it.
This validates the bug fix.

Ensures the bug is not reintroduced.

Ensures the fix is backported to older kernels.

Accidentally finds other bugs.

A particular data race outcome may be difficult to reproduce.

Fuzzy Sync helps reproduce bugs which require a particular race outcome.

REPRODUCERS

A simple race to get us startedA simple race to get us started

•

•

How can winner be equal to 'A' and 'B'?

Will winner ever be equal to 'A' when ...end_race_a and ...end_race_b are synchronised?

SIMPLE RACE

// Thread A

while (fzsync_run_a(&pair)) {
 winner = 'A';

 fzsync_start_race_a(&pair);
 if (winner == 'A' && winner == 'B')
 winner = 'A';
 fzsync_end_race_a(&pair);
}

// Thread B

while (fzsync_run_b(&pair)) {

 fzsync_start_race_b(&pair);
 nanosleep(/* for 1ns */);
 winner = 'B';
 fzsync_end_race_b(&pair);
}

nanosleep() winner=’B’

winner=’A’start_a()

start_b()

Time

end_a/b

Delay A Window

nanosleep() winner=’B’

winner=’A’start_a()

start_b() end_b()

end_a()

Spin Wait

Calculating Delay

Implementing Delay

SIMPLE RACE

Timing PlotsTiming Plots

•

•

winner == 'A' only once (red circle), when A is delayed by roughly 55000ns.

More about this at .

SIMPLE RACE

richiejp.com/a-rare-data-race

https://richiejp.com/a-rare-data-race

 and LTP test anatomy and LTP test anatomy

•

•

•

The LTP library implements main and many features

We declare struct tst_test test and implement the test specific logic

Has some similarities to popular testing frameworks

SENDMSG03

sendmsg03sendmsg03

// SPDX-License-Identifier: GPL-2.0-or-later
...
#include "tst_test.h"
#include "tst_fuzzy_sync.h"
...
static struct tst_fzsync_pair fzsync_pair;

static void setup(void)
{
 ...
 fzsync_pair.exec_loops = 100000;
 tst_fzsync_pair_init(&fzsync_pair);
}

static void cleanup(void)
{

https://github.com/linux-test-project/ltp/blob/master/testcases/kernel/syscalls/sendmsg/sendmsg03.c

•

•

•

•

sendmsg and setsockopt are system calls which act on a socket

They are both acting on the same socket (sockfd)

It is clear just from the fzsync calls that the test is racing sendmsg against setsockopt.

For some reason setting IP_HDRINCL to zero at the same time as sending a message is bad

SENDMSG03

// Thread A
int val = 1;
...
while (tst_fzsync_run_a(&fzsync_pair)) {
 SAFE_SETSOCKOPT_INT(sockfd, SOL_IP,
 IP_HDRINCL, val);
 tst_fzsync_start_race_a(&fzsync_pair);
 sendmsg(sockfd, &msg, 0);

 tst_fzsync_end_race_a(&fzsync_pair);
 ...
}

// Thread B
int val = 0;

while (tst_fzsync_run_b(&fzsync_pair)) {

 tst_fzsync_start_race_b(&fzsync_pair);
 setsockopt(sockfd, SOL_IP, IP_HDRINCL,
 &val, sizeof(val));
 tst_fzsync_end_race_b(&fzsync_pair);

}

•

•

•

•

•

do_ip_setsocket can set inet->hdrincl while raw_sendmsg executes.

We start with hdrincl = 1

It is possible to set hdrincl = 0 after branch 1, but before branch 2.

rfv will contain uninitialised stack data if branch 1 is not taken.

There could be other bugs as inet->hdrincl is accessed multiple times.

SENDMSG03

// Thread A (net/ipv4/raw.c)
static int raw_sendmsg(..) {
 ...
 if (!inet->hdrincl) { //Branch 1
 rfv.iov = msg->msg_iov;
 rfv.hlen = 0;
 err = raw_probe_proto_opt(&rfv, &fl4);
 ...

 if (!inet->hdrincl) { //Branch 2
 ...
 err = ip_append_data(..., &rfv, ...);

// Thread B (net/ipv4/ip_sockglue.c)
static int do_ip_setsockopt(...)
{
 ...
 case IP_HDRINCL:
 if (sk->sk_type != SOCK_RAW) {
 err = -ENOPROTOOPT;
 break;
 }
 inet->hdrincl = val ? 1 : 0;
 break;
 ...

•

•

•

•

•

Fuzzy Sync loops 8354 times until timing volatility reaches a lower threshold.

It appears sendmsg takes far longer to execute than setsocketopt.

Fuzzy Sync calculates a delay range which will overlap the syscalls in all possible ways.

Shortly after we start adding random delays we quickly hit a KASAN splat.

Stale stack data is passed to ip_append_data and eventually blows up
csum_and_copy_from_iter_full which tries to dereference part of it.

SENDMSG03

st_test.c:1261: TINFO: Timeout per run is 0h 05m 00s
[33.972676] raw_sendmsg: sendmsg03 forgot to set AF_INET. Fix it!
... TINFO: Minimum sampling period ended
... TINFO: loop = 1024, delay_bias = 0
... TINFO: start_a - start_b: { avg = 104ns, avg_dev = 32ns, dev_ratio = 0.31 }
... TINFO: end_a - start_a : { avg = 96269ns, avg_dev = 12595ns, dev_ratio = 0.13 }
... TINFO: end_b - start_b : { avg = 3750ns, avg_dev = 645ns, dev_ratio = 0.17 }
... TINFO: end_a - end_b : { avg = 92623ns, avg_dev = 12214ns, dev_ratio = 0.13 }
... TINFO: spins : { avg = 51068 , avg_dev = 7169 , dev_ratio = 0.14 }
... TINFO: Reached deviation ratios < 0.10, introducing randomness
... TINFO: Delay range is [-1839, 48895]
... TINFO: loop = 8354, delay_bias = 0
... TINFO: start_a - start_b: { avg = 109ns, avg_dev = 8ns, dev_ratio = 0.08 }
... TINFO: end_a - start_a : { avg = 85945ns, avg_dev = 6629ns, dev_ratio = 0.08 }
... TINFO: end_b - start_b : { avg = 3234ns, avg_dev = 91ns, dev_ratio = 0.03 }
... TINFO: end_a - end_b : { avg = 82821ns, avg_dev = 6539ns, dev_ratio = 0.08 }
... TINFO: spins : { avg = 47118 , avg dev = 4193 , dev ratio = 0.09 }

sendmsg03 Wrap Upsendmsg03 Wrap Up

•

•

•

•

Most likely the initial timings are recorded with hdrincl = 0 for all of raw_sendmsg because
setsockopt is much faster. However this still results in a good delay range.

Kernel bug assigned CVE-2017-17712

Found, fixed and original POC by Mohamed Ghannam

Reproducer converted to LTP Fuzzy Sync by Martin Doucha

SENDMSG03

https://seclists.org/oss-sec/2017/q4/401

https://seclists.org/oss-sec/2017/q4/401

 (CVE-2019-8912) (CVE-2019-8912)

•

•

•

•

Races fchownat against dup2 on a crypto API socket.

dup2 has the side effect of closing the socket pointed to by sock.

fchownat accesses the socket, or file, pointed to by sock.

If errno = ENOENT is set by fchownat, then we hit the race window, but the kernel handled it co

AF_ALG07

af_alg07af_alg07

// Thread A
while (tst_fzsync_run_a(&fzsync_pair)) {
 sock = tst_alg_setup_reqfd(...);
 tst_fzsync_start_race_a(&fzsync_pair);
 TEST(fchownat(sock, /*this user*/));
 tst_fzsync_end_race_a(&fzsync_pair);
 ...
 if (TST_RET == -1 && TST_ERR == ENOENT) {
 tst_res(TPASS | TTERRNO, ...

// Thread B
while (tst_fzsync_run_b(&fzsync_pair)) {

 tst_fzsync_start_race_b(&fzsync_pair);
 dup2(fd, sock);
 tst_fzsync_end_race_b(&fzsync_pair);
}

https://github.com/linux-test-project/ltp/blob/master/testcases/kernel/crypto/af_alg07.c

Meanwhile in Meanwhile in net/socket.cnet/socket.c

•

•

•

•

__sock_release (from dup2) frees sock->sk, but does not set it to NULL.

While sock->sk is being freed fchownat may be waiting for the inode lock (or whatever).

When sockfs_setattr (from fchownat) runs we get a use-after-free instead of ENOENT

Fix is to set sock->sk = NULL with inode lock held.

AF_ALG07

// Thread A, inode lock is held
static int sockfs_setattr(
 struct dentry *dentry /* has sock */,
 struct iattr *iattr) {
 ...
 if (sock->sk)
 sock->sk->sk_uid = iattr->ia_uid;
 else
 err = -ENOENT;
 ...

// Thread B
static void __sock_release(
 struct socket *sock,
 struct inode *inode) {
 ...
 if (inode) inode_lock(inode);
 // af_alg_release -> sock_put(sock->sk)
 sock->ops->release(sock);
 if (inode) inode_unlock(inode);
 ...

But there is another raceBut there is another race

•

•

•

•

•

•

Passes quickly on fixed x86 systems.

On large ARM64 machines we occasionally get fails on fixed systems.

dup2 is "atomic", but...

There is a window where dup2 invalidates the socket's file descriptor, before re-pointing it to the te

This causes fchownat to return much quicker with EBADF.

If this happens consistently, our delay range for fchownat will be too short.

AF_ALG07

Delay biasDelay bias

•

•

•

When we see EBADF we can add a constant delay to dup2.

This ensures fchownat has enough time to grab the socket from the file descriptor.

This then means fchownat will continue down a longer path.

Other tests with delay biasOther tests with delay bias

•

•

•

AF_ALG07

if (TST_RET == -1 && TST_ERR == EBADF) {
 tst_fzsync_pair_add_bias(&fzsync_pair, 1);
 continue;
}

CVE-2016-7117

setsockopt06

setsockopt07

https://github.com/linux-test-project/ltp/blob/master/testcases/cve/cve-2016-7117.c
https://github.com/linux-test-project/ltp/blob/master/testcases/kernel/syscalls/setsockopt/setsockopt06.c
https://github.com/linux-test-project/ltp/blob/master/testcases/kernel/syscalls/setsockopt/setsockopt06.c

Wrapup af_alg07Wrapup af_alg07

•

•

•

•

•

•

•

•

Is also a test of Fuzzy Sync's reliability as we must hit a race window to pass.

Discovered by Syzkaller

LTP test written by Martin Doucha

Delay bias added by Li Wang

Specific fix by

General fix by

More general test(s) based on reproducer by Eric is/are possible.

One day a kernel change will probably break the test, but sometimes we just have to live with that.

AF_ALG07

Mao Wenan

Eric Biggers

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=9060cb719e61b685ec0102574e10337fa5f445ea
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ff7b11aa481f682e0e9711abfeb7d03f5cd612bf

Why don't you just...Why don't you just...

•
–

–

–

–

•
–

–

–

•
–

–

–

Create many threads or processes
Works great for POCs, but...

Expensive

Terrible and unknown scaling properties

Like fishing with dynamite

Use X
It works by instrumenting the code (it's invasive, requires CAP_SYS_ADMIN etc.)

We couldn't find X

It's usually easier to specifically rewrite something for the LTP anyway

Add a random sleep
That is what Fuzzy Sync does, but we use a spin wait

Context switching often takes longer than the required sleep

Different systems require much different delay ranges.

WHY

Standalone editionStandalone edition

•

•
–

•

•

•

Just a single header file

Only dependency is a compiler with atomic intrinsics
POSIX threading is used by default, but can be removed

Can be easily copied into another project

Contains example test using CMake/CTest

 is still under development, but is fairly stable now

STANDALONE

https://gitlab.com/Palethorpe/fuzzy-synchttps://gitlab.com/Palethorpe/fuzzy-sync

LTP version

https://gitlab.com/Palethorpe/fuzzy-sync
https://github.com/linux-test-project/ltp/blob/master/include/tst_fuzzy_sync.h

