
Matthew Stephen Stuckwisch

Surprisingly Unsurprising
The joy of unexpected simplicity

Matthew Stephen Stuckwisch

Surprisingly Unsurprising
The joy of unexpected simplicity
and how to bring it to end users

Préstame la sorpresa,

préstame aquello

colo que nun cuntaba:

el soníu del agua

no fondero la viesca,

los finales abiertos

y ciertes charres nocturnes

que, como’l cursu d’un ríu,

sábese y nun se sabe

el sitiu onde nos pueden amenar

Préstame la sorpresa,

préstame lo fortuito y lo casual.

Por eso ye que naguo pol sosiegu

que quiciabes acabe traeme

imprevisiblemente al prósimu momentu.

Sosiegu

Marta Mori d’Arriba
(Calm)

Préstame la sorpresa,

préstame aquello

colo que nun cuntaba:

el soníu del agua

no fondero la viesca,

los finales abiertos

y ciertes charres nocturnes

que, como’l cursu d’un ríu,

sábese y nun se sabe

el sitiu onde nos pueden amenar

Préstame la sorpresa,

préstame lo fortuito y lo casual.

Por eso ye que naguo pol sosiegu

que quiciabes acabe traeme

imprevisiblemente al prósimu momentu.

I like surprises,
I like those things.
I can’t anticipate:

the sound of water.
in the depths of the forest,

open endings.
and those late night chats.
that, like the flow of a river,

can lead us to places.
known and unknown.

I like surprises,
I like the chance and fortune.
For this I yearn for the calm.

that might end up bringing me.
chancefully to the next moment.

Sosiegu

Marta Mori d’Arriba
(Calm)

Goals of this talk
1. Describe surprising(ly mundane) features of Raku.
2. Consider how they might be used in module design.
3. Demo some ways to (re)create some potentially

useful things.
4. Show ways existing modules have approached

things to stay Raku-ish.
5. Provide a rough checklist for module development.

0.1 + 0.2 = ___

0.1 + 0.2 = ___

a) 0.30000000000000004 b) 0.3

0.1 + 0.2 = ___

a) 0.30000000000000004 b) 0.3

C, Java, JavaScript,
Julia, Python 2*/3,

Perl*, Ruby, Rust,

Swift

0.1 + 0.2 = ___

a) 0.30000000000000004 b) 0.3

C, Java, JavaScript,
Julia, Python 2*/3,

Perl*, Ruby, Rust,

Swift

SageMath, R,
Mathematica,

MATLAB

0.1 + 0.2 = ___

a) 0.30000000000000004 b) 0.3

C, Java, JavaScript,
Julia, Python 2*/3,

Perl*, Ruby, Rust,

Swift

* These languages cheat and stringify by default as 0.3 because of trimming,  
but internally they store/use the wrong value.

SageMath, R,
Mathematica,

MATLAB

0.1 + 0.2 = ___

a) 0.30000000000000004 b) 0.3

C, Java, JavaScript,
Julia, Python 2*/3,

Perl*, Ruby, Rust,

Swift

* These languages cheat and stringify by default as 0.3 because of trimming,  
but internally they store/use the wrong value.

SageMath, R,
Mathematica,

MATLAB
Raku

In Raku, the two most basic class types
(numbers, strings) are chosen smartly:

In Raku, the two most basic class types
(numbers, strings) are chosen smartly:

Numbers prefer rational / big integer types;
strings default to a grapheme-based Unicode.

In Raku, the two most basic class types
(numbers, strings) are chosen smartly:

Numbers prefer rational / big integer types;
strings default to a grapheme-based Unicode.

Smart defaults save people time that they might
not even know they're otherwise losing.

Switching

Switching
Raku doesn’t use a traditional switch

statement. Instead, it uses given

Switching
Raku doesn’t use a traditional switch

statement. Instead, it uses given

given $foo {
 when 1 { … }
 when 2 { … }
 when 3 { … }
 default { … }
}

Switching

given $foo {
 when 'a' { … }
 when 1 { … }
 when /α/ { … }
 default { … }
}

Switching
given $foo {
 when 'a' { … }
 when 1 { … }
 when /α/ { … }
 default { … }
}

Switching
given $foo, $bar {
 when 'a', 'b' { … }
 when 1, 2 { … }
 when /α/, /β/ { … }
 default { … }
}

Switching
given $foo, $bar {
 when 'a', 'b' { … }
 when 1, 2 { … }
 when /α/, /β/ { … }
 when *, Str { … }
 default { … }
}

Switching
if ($foo, $bar) ~~ ('a', 'b') { … }
elsif ($foo, $bar) ~~ (1, 2) { … }
elsif ($foo, $bar) ~~ (/α/, /β/) { … }
elsif ($foo, $bar) ~~ (*, Str) { … }
else { … }

Switching
if ($foo, $bar) ~~ ('a', 'b') { … }
elsif ($foo, $bar) ~~ (1, 2) { … }
elsif ($foo, $bar) ~~ (/α/, /β/) { … }
elsif ($foo, $bar) ~~ (*, Str) { … }
else { … }

Switching
if ($foo, $bar) ~~ ('a', 'b') { … }
elsif ($foo, $bar) ~~ (1, 2) { … }
elsif ($foo, $bar) ~~ (/α/, /β/) { … }
elsif ($foo, $bar) ~~ (*, Str) { … }
else { … }

if $foo ~~ 'a'
&& $bar ~~ 'b'

Switching
if ($foo, $bar) ~~ ('a', 'b') { … }
elsif ($foo, $bar) ~~ (1, 2) { … }
elsif ($foo, $bar) ~~ (/α/, /β/) { … }
elsif ($foo, $bar) ~~ (*, Str) { … }
else { … }

if $foo ~~ 'a'
&& $bar ~~ 'b'

Switching
if ($foo, $bar) ~~ ('a', 'b') { … }
elsif ($foo, $bar) ~~ (1, 2) { … }
elsif ($foo, $bar) ~~ (/α/, /β/) { … }
elsif ($foo, $bar) ~~ (*, Str) { … }
else { … }

if $foo ~~ 'a'
&& $bar ~~ 'b'

* (whatever) means "I
don't care about this
value", it always
returns True!

Switching
if ($foo, $bar) ~~ ('a', 'b') { … }
elsif ($foo, $bar) ~~ (1, 2) { … }
elsif ($foo, $bar) ~~ (/α/, /β/) { … }
elsif ($foo, $bar) ~~ (*, Str) { … }
else { … }

if $foo ~~ 'a'
&& $bar ~~ 'b'

* (whatever) means "I
don't care about this
value", it always
returns True!

Str typechecks
for Str

Switching
if ($foo, $bar) ~~ ('a', 'b') { … }
elsif ($foo, $bar) ~~ (1, 2) { … }
elsif ($foo, $bar) ~~ (/α/, /β/) { … }
elsif ($foo, $bar) ~~ (*, Str) { … }
else { … }

if $foo ~~ 'a'
&& $bar ~~ 'b'

* (whatever) means "I
don't care about this
value", it always
returns True!

Str typechecks
for Str

given $foo, $bar {
 when 'a', 'b' { … }
 when 1, 2 { … }
 when /α/, /β/ { … }
 when *, Str { … }
 default { … }
}

Junctions

Junctions
You never know what you have until it’s gone.

Junctions
You never know what you have until it’s gone.

my @a = <a b c d e f g h>;

Junctions
You never know what you have until it’s gone.

my @a = <a b c d e f g h>;
my @b = <i j k l m n o b>;

Junctions
You never know what you have until it’s gone.

my @a = <a b c d e f g h>;
my @b = <i j k l m n o b>;
my @c = <a b b c c d e e>;

Junctions
You never know what you have until it’s gone.

my @a = <a b c d e f g h>;
my @b = <i j k l m n o b>;
my @c = <a b b c c d e e>;

Junctions
You never know what you have until it’s gone.

my @a = <a b c d e f g h>;
my @b = <i j k l m n o b>;
my @c = <a b b c c d e e>;

say "overlap" if any @a eq any @b;

Junctions
You never know what you have until it’s gone.

my @a = <a b c d e f g h>;
my @b = <i j k l m n o b>;
my @c = <a b b c c d e e>;

say "overlap" if any @a eq any @b;
say "all-valid" if all @c eq any @a;

Junctions
You never know what you have until it’s gone.

my @a = <a b c d e f g h>;
my @b = <i j k l m n o b>;
my @c = <a b b c c d e e>;

say "overlap" if any @a eq any @b;
say "all-valid" if all @c eq any @a;

Junctions
You never know what you have until it’s gone.

my @a = <a b c d e f g h>;
my @b = <i j k l m n o b>;
my @c = <a b b c c d e e>;

say "overlap" if any @a eq any @b;
say "all-valid" if all @c eq any @a;

'overlap'

Junctions
You never know what you have until it’s gone.

my @a = <a b c d e f g h>;
my @b = <i j k l m n o b>;
my @c = <a b b c c d e e>;

say "overlap" if any @a eq any @b;
say "all-valid" if all @c eq any @a;

'overlap'
'all-valid'

The slurpy family

The slurpy family
Three ways to consume lists of items.

The slurpy family
Three ways to consume lists of items.

sub slurpy (*@pour-and-savor) { … }

The slurpy family
Three ways to consume lists of items.

sub slurpy (*@pour-and-savor) { … }
sub slurpy (**@chug-no-regrets) { … }

The slurpy family
Three ways to consume lists of items.

sub slurpy (*@pour-and-savor) { … }
sub slurpy (**@chug-no-regrets) { … }
sub slurpy (+@read-the-label) { … }

The slurpy family

The slurpy family
@*pour-and-savor

The slurpy family
@*pour-and-savor Items inside of lists are iterated

The slurpy family
@*pour-and-savor Items inside of lists are iterated

parrot 1, (2, 3, (4, 5), 6), 7, (((8),),)

sub parrot (*@x) { .say for @x }

my @abc = <a b c>; parrot @abc;

The slurpy family
@*pour-and-savor Items inside of lists are iterated

parrot 1, (2, 3, (4, 5), 6), 7, (((8),),)

sub parrot (*@x) { .say for @x }

my @abc = <a b c>; parrot @abc;

a
b
c

The slurpy family
@*pour-and-savor Items inside of lists are iterated

parrot 1, (2, 3, (4, 5), 6), 7, (((8),),)

sub parrot (*@x) { .say for @x }

1
2
3
4
5
6
7
8

my @abc = <a b c>; parrot @abc;

a
b
c

The slurpy family
@**chug-no-regrets A list treated as its

parrot 1, (2, 3, (4, 5), 6), 7, (((8),),)

sub parrot (**@x) { .say for @x }

my @abc = <a b c>; parrot @abc;

The slurpy family
@**chug-no-regrets A list treated as its

parrot 1, (2, 3, (4, 5), 6), 7, (((8),),)

sub parrot (**@x) { .say for @x }

my @abc = <a b c>; parrot @abc;

(a b c)

The slurpy family
@**chug-no-regrets A list treated as its

parrot 1, (2, 3, (4, 5), 6), 7, (((8),),)

sub parrot (**@x) { .say for @x }

my @abc = <a b c>; parrot @abc;

1
(2 3 (4 5) 6)
7
((8))

(a b c)

The slurpy family
@+read-the-label Decide smartly (by single argument rule)

parrot 1, (2, 3, (4, 5), 6), 7, (((8),),)

sub parrot (+@x) { .say for @x }

my @abc = <a b c>; parrot @abc;

The slurpy family
@+read-the-label Decide smartly (by single argument rule)

parrot 1, (2, 3, (4, 5), 6), 7, (((8),),)

sub parrot (+@x) { .say for @x }

my @abc = <a b c>; parrot @abc;

a
b
c

The slurpy family
@+read-the-label Decide smartly (by single argument rule)

parrot 1, (2, 3, (4, 5), 6), 7, (((8),),)

sub parrot (+@x) { .say for @x }

my @abc = <a b c>; parrot @abc;

1
(2 3 (4 5) 6)
7
((8))

a
b
c

The slurpy family
sub slurpy (*@pour-and-savor) { … }
sub slurpy (**@chug-no-regrets) { … }
sub slurpy (+@read-the-label) { … }

The slurpy family
sub slurpy (*@pour-and-savor) { … }
sub slurpy (**@chug-no-regrets) { … }
sub slurpy (+@read-the-label) { … }

say @a, $b, $c; say @a

for @a, $b, $c {…} for @a {…}

Parentheses

Parentheses
In Raku, parentheses don't make a list. [pikachu_face.gif]

Parentheses
In Raku, parentheses don't make a list. [pikachu_face.gif]

Parentheses are more likely to be superfluous.

Parentheses
In Raku, parentheses don't make a list. [pikachu_face.gif]

Parentheses are more likely to be superfluous.
my @foo = 1, 2, 3;

Parentheses
In Raku, parentheses don't make a list. [pikachu_face.gif]

Parentheses are more likely to be superfluous.
my @foo = 1, 2, 3;

Even for sub/method calls

Parentheses
In Raku, parentheses don't make a list.

bar($foo, $a, $b)
bar $foo, $a, $b

[pikachu_face.gif]

Parentheses are more likely to be superfluous.
my @foo = 1, 2, 3;

Even for sub/method calls

Parentheses
In Raku, parentheses don't make a list.

$foo.bar($a, $b)bar($foo, $a, $b)
$foo.bar: $a, $bbar $foo, $a, $b
bar $foo: $a, $b

[pikachu_face.gif]

Parentheses are more likely to be superfluous.
my @foo = 1, 2, 3;

Even for sub/method calls

OO style

Procedural style

Parentheses
These can be chained too, as long as

each call is the final one of the previous:

Parentheses
These can be chained too, as long as

each call is the final one of the previous:

a(b(c(d(e(f(1,2,3))))))

Parentheses
These can be chained too, as long as

each call is the final one of the previous:

a b c d e f 1, 2, 3
a(b(c(d(e(f(1,2,3))))))

Parentheses
These can be chained too, as long as

each call is the final one of the previous:

a b c d e f 1, 2, 3

eat bake sear butcher get $cow

a(b(c(d(e(f(1,2,3))))))

Parentheses
These can be chained too, as long as

each call is the final one of the previous:

a b c d e f 1, 2, 3

eat bake sear butcher get $cow
eat(bake(sear(butcher(get($cow)))))

a(b(c(d(e(f(1,2,3))))))

Parentheses
These can be chained too, as long as

each call is the final one of the previous:

a b c d e f 1, 2, 3

eat bake sear butcher get $cow
eat(bake(sear(butcher(get($cow)))))

say substr
 $string,
 0,
 max $string.elems, 8

a(b(c(d(e(f(1,2,3))))))

Parentheses
Not required after control statements

Parentheses
Not required after control statements

if $condition { … }

Parentheses
Not required after control statements

if $condition { … }

for @list { … }

Parentheses
Not required after control statements

if $condition { … }

for @list { … }

unless $foo && $bar
 || $abc && $xyz
 || $override
{ initial-setup }

Parentheses
Why is this important?

Parentheses
Why is this important?

Cleaner code! Less line noise!
No parentheses hell! I love you Lisp,

I promise.

Parentheses
Why is this important?

Cleaner code! Less line noise!
No parentheses hell! I love you Lisp,

I promise.

On the other hand…

Parentheses
Why is this important?

Cleaner code! Less line noise!
No parentheses hell!

Methods, subs and control
statements can be visually similar.

I love you Lisp,
I promise.

On the other hand…

Blocks
In Raku, all blocks are objects.

sub bar ($a) { $a() }

foo { say “surprise!” }
bar { say “surprise!” }

sub foo ($a) { say $a }

-> ;; $_ is raw = OUTER::<$_>
{ #`(Block|140425853909408) … }

surprise!

Does that mean something like…

Does that mean something like…

loop { … }

Does that mean something like…

loop { … }

is really just a sub?

Does that mean something like…

loop { … }

is really just a sub?

Basically, yes.

* Internally it’s a bit more complicated since loop is defined in NQP and we need to
handle things like last, etc., but then again everything is really just ultimately defined

there as a sub or method anyways. Just shhh…

*

Let’s make our own loop ‘control statement’

Let’s make our own loop ‘control statement’

sub bucle (&código) { código() xx ∞ }
Spanish for

“loop”
Spanish for

“code”

Let’s make our own loop ‘control statement’

sub bucle (&código) { código() xx ∞ }
Spanish for

“loop”
Spanish for

“code”

bucle { say "¡Hola!" }

Let’s make our own loop ‘control statement’

sub bucle (&código) { código() xx ∞ }
Spanish for

“loop”
Spanish for

“code”

bucle { say "¡Hola!" }¡Hola!
¡Hola!
¡Hola!
¡Hola!
¡Hola!

Gather / Take

Collect / Grab

sub collect (&code) {
 my @*collection;
 code();
 @*collection;
}

Collect / Grab

sub collect (&code) {
 my @*collection;
 code();
 @*collection;
}

Collect / Grab

sub grab ($item) {
 @*collection.push: $item;
}

Collect / Grab

sub collect (&code) {
 my @*collection;
 code();
 @*collection;
}

sub grab ($item) {
 @*collection.push: $item;
}

Collect / Grab

sub collect (&code) {
 my @*collection;
 code();
 @*collection;
}

sub grab ($item) {
 @*collection.push: $item;
}

my @primes = collect {
 grab $_
 if .is-prime
 for ^100
}

say @primes;

Collect / Grab

sub collect (&code) {
 my @*collection;
 code();
 @*collection;
}

sub grab ($item) {
 @*collection.push: $item;
}

my @primes = collect {
 grab $_
 if .is-prime
 for ^100
}

say @primes; [2 3 5 7 11 13 17 19 23 29 31 37 41
43 47 53 59 61 67 71 73 79 83 89 97]

Collect / Grab

sub collect (&code) {
 my @*collection;
 code();
 @*collection;
}

sub grab ($item) {
 @*collection.push: $item;
}

my @six-factors =
 collect {
 grab $_ if $_ %% 2
 for collect {
 grab $_ if $_ %% 3
 for ^100
 }
 }

say @six-factors;

Collect / Grab

sub collect (&code) {
 my @*collection;
 code();
 @*collection;
}

sub grab ($item) {
 @*collection.push: $item;
}

my @six-factors =
 collect {
 grab $_ if $_ %% 2
 for collect {
 grab $_ if $_ %% 3
 for ^100
 }
 }

say @six-factors;[0 6 12 18 24 30 36 42 48
54 60 66 72 78 84 90 96]

Localized Block

Localized Block
What do we want?

Localized Block

say "Hello"; # normal say

localized {
 say "Hello"; # localized say
}

say "Good-bye"; # normal say

What do we want?

Localized Block

say "Hello";

localized {
 say "Hello";
}

say "Good-bye";

Localized Block

say "Hello";

localized {
 say translate "Hello";
}

say "Good-bye";

Localized Block

say "Hello";

localized {
 say "Hello";
}

say "Good-bye";

Localized Block

foo "Hello";

localized {
 foo "Hello";
}

foo "Good-bye";

Localized Block

Localized Block
sub foo($s) {
 if ?? { say translate $s }
 else { say $s }
}

Localized Block
foo "Hello";

localized {

 foo "Hello";
}

foo "Good-bye";

 my $*LOCALIZED = True;

Localized Block

Localized Block
sub foo($s) {
 if $*LOCALIZED { say translate $s }
 else { say $s }
}

Localized Block

foo "Hello";

localized {
 my $*LOCALIZED = True;
 foo "Hello";
}

foo "Good-bye";

Localized Block

Localized Block
sub foo($s) {
 if $*LOCALIZED { say translate $s }
 else { say $s }
}

Localized Block
sub foo($s) {
 if $*LOCALIZED { say translate $s }
 else { say $s }
}

&say.wrap: sub ($s) {
 if $*LOCALIZED { callwith translate $s }
 else { callsame }
}

Localized Block
sub foo($s) {
 if $*LOCALIZED { say translate $s }
 else { say $s }
}

&say.wrap: sub ($s) {
 if $*LOCALIZED { callwith translate $s }
 else { callsame }
}

By wrapping, we don't need to call a special sub.

Wrapping is global, so the conditional ensures other calls to say are unchanged.

Localized Block
foo "Hello";

localized {
 my $*LOCALIZED = True;
 foo "Hello";
}

foo "Good-bye";

Localized Block
foo "Hello";

localized {
 my $*LOCALIZED = True;
 my $*LANGUAGE = 'en';
 foo "Hello";
}

foo "Good-bye";

Localized Block
foo "Hello";

localized {
 my $*LOCALIZED = True;

 my $*LANGUAGE = 'en';
 foo "Hello";
}

foo "Good-bye";

 use Intl::UserLanguage;

Localized Block
foo "Hello";

localized {
 my $*LOCALIZED = True;

 my $*LANGUAGE = 'en';
 foo "Hello";
}

foo "Good-bye";

= user-language;
 use Intl::UserLanguage;

Localized Block
foo "Hello";

localized {
 my $*LOCALIZED = True;

 my $*LANGUAGE = 'en';
 foo "Hello";
}

foo "Good-bye";

= user-language;
 use Intl::UserLanguage;

Localized Block
sub localized (Block &block) {
 use Intl::UserLanguage;

 my $*LOCALIZED = True;
 my $*LANGUAGE = user-language;

 block();
}

Localized Block
say "hello"; # 'hello'

localized {
 say "hello"; # '¡Hola!'
 say "goodbye"; # '¡Adiós!'
}

say "bye"; # 'bye'

Localized Block
say "hello"; # 'hello'

localized {
 language 'ko';
 say "hello"; # '안녕!'
 say "goodbye"; # '잘 가!'
}

say "bye"; # 'bye'

Localized Block
sub localized (Block &block) {
 use Intl::UserLanguage;

 my $*LOCALIZED = True;
 my $*LANGUAGE = user-language;

 block();
}

Localized Block
sub localized (Block &block) {
 use Intl::UserLanguage;

 my $*LOCALIZED = True;
 my $*LANGUAGE = user-language;

 block();
}

sub language (Str $s) { $*LANGUAGE = $s }

Localized Block
sub localized (Block &block) {
 use Intl::UserLanguage;

 my $*LOCALIZED = True;
 my $*LANGUAGE = user-language;

 block();
}

sub language (Str $s) { $*LANGUAGE = $s }

unit module LocalizedBlocked;
is
 e
xp
or
t

is
 e
xp
or
t

Localized Block
say "hello"; # 'hello'

localized {
 language 'ko';
 say "hello"; # '안녕!'
 say "goodbye"; # '잘 가!'
}

say "bye"; # 'bye'

Localized Block
say "hello"; # 'hello'

localized {
 language 'de';
 say "hello"; # 'Hallo!'
 say "goodbye"; # 'Tchüss!'
}

say "bye"; # 'bye'

Localized Block
say "hello"; # 'hello'

localized {
 language 'chr';
 say "hello"; # 'ᎣᏏᏲ!'
 say "goodbye"; # 'ᏙᎾᏓᎬᎰᎢ!'
}

say "bye"; # 'bye'

Localized Block
unit module LocalizedBlocked;

#| Creates a localized environment to run code in
sub localized (
 Block &block #= Code to run with localized says
) is export {
 use Intl::UserLanguage;

 my $*LOCALIZED = True;
 my $*LANGUAGE = user-language;

 block();
}

#| Sets the language for a localized block
sub language (
 Str $s #= Manually set the language of a localized block
) is export {
 warn "Useless use of language() outside of localized block"
 without $*LOCALIZED;
 $*LANGUAGE = $s
}

&say.wrap: sub ($s) {
 if $*LOCALIZED { callwith translate $s }
 else { callsame }
}

Traits

Traits
Traits allow you to modify most things at compile time.

Traits
Traits allow you to modify most things at compile time.

class Foo is export {
 has $.thing is rw;
 has $!private is built;
}

Traits
Traits allow you to modify most things at compile time.

class Foo is export {
 has $.thing is rw;
 has $!private is built;
}

You might think that they're some very complex
structure that's special cased in the compiler but …

Traits
Traits allow you to modify most things at compile time.

class Foo is export {
 has $.thing is rw;
 has $!private is built;
}

You might think that they're some very complex
structure that's special cased in the compiler but …

They're just subs.

Traits
Traits allow you to modify most things at compile time.

class Foo is export {
 has $.thing is rw;
 has $!private is built;
}

You might think that they're some very complex
structure that's special cased in the compiler but …

They're just subs.

Traits
So let's say we wanted to log access to a sub.

unit module SecretStuff;

sub get (|) { … }

Traits
So let's say we wanted to log access to a sub.

unit module SecretStuff;

sub get (|) is logged { … }

Traits
#| Logs access to any sub
multi sub trait_mod:<is> (
 Sub \r, #= trait is applied to this
 :$logged!, #= name of trait
) {
 r.wrap: sub (|args) {
 say "At {time}, called {r.name} with ", args;
 callsame
 }
}

Traits
#| Logs access to any sub
multi sub trait_mod:<is> (
 Sub \r, #= trait is applied to this
 :$logged!, #= name of trait
) {
 r.wrap: sub (|args) {
 say "At {time}, called {r.name} with ", args;
 callsame
 }
}

Traits
#| Logs access to any sub
multi sub trait_mod:<is> (
 Sub \r, #= trait is applied to this
 :$logged!, #= name of trait
) {
 r.wrap: sub (|args) {
 say "At {time}, called {r.name} with ", args;
 callsame
 }
}

Traits
multi sub trait_mod:<is> (Sub \r, :$logged!) {
 r.wrap: sub (|args) {
 say "At {time}, called {r.name} with ", args; callsame
 }
}

Traits
multi sub trait_mod:<is> (Sub \r, :$logged!) {
 r.wrap: sub (|args) {
 say "At {time}, called {r.name} with ", args; callsame
 }
}

sub get-medical-data($patient, $employee) is logged {
 if $employee may-access $patient {
 …
 }
}

multi sub infix:<may-access> ($employee, $patient --> Bool) { … }

*

Traits
multi sub trait_mod:<is> (Sub \r, :$logged!) {
 r.wrap: sub (|args) {
 say "At {time}, called {r.name} with ", args; callsame
 }
}

sub get-medical-data($patient, $employee) is logged {
 if $employee may-access $patient {
 …
 }
}

multi sub infix:<may-access> ($employee, $patient --> Bool) { … }

*

get-medical-data 'John', 'Dr. Jenkins';
get-medical-data 'Jane', 'Dr. Nguyen';

Traits
multi sub trait_mod:<is> (Sub \r, :$logged!) {
 r.wrap: sub (|args) {
 say "At {time}, called {r.name} with ", args; callsame
 }
}

sub get-medical-data($patient, $employee) is logged {
 if $employee may-access $patient {
 …
 }
}

multi sub infix:<may-access> ($employee, $patient --> Bool) { … }

*

get-medical-data 'John', 'Dr. Jenkins';
get-medical-data 'Jane', 'Dr. Nguyen';

At 1610736801, called get-medical-data with \("John", "Dr. Jenkins")
At 1610736801, called get-medical-data with \("Jane", "Dr. Nguyen")

Regexen / Tokens

Regexen / Tokens
grammar Foo {
 token TOP { <alpha> <smile> }
 token smile { ':-)' | 😀 }
}

Regexen / Tokens
grammar Foo {
 token TOP { <alpha> <smile> }
 token smile { ':-)' | 😀 }
}

The special syntax of <…> is technically
just a method call that returns a Match.

Regexen / Tokens
grammar Foo {
 token TOP { <alpha> <smile> }
 token smile { ':-)' | 😀 }
}

The special syntax of <…> is technically
just a method call that returns a Match.

These can be declared outside of regexen/grammars
to be used across multiple definitions.

Regexen / Tokens

Regexen / Tokens
my token happy {😀|😃|😄|😁|😆|😊|🙂}
my token sad {😞|😟|🙁|☹|😢|😭|😥}
my token flag { <[🇦..🇿]> ** 2 }

\x1F1E6 \x1F1FF

Regexen / Tokens
my token happy {😀|😃|😄|😁|😆|😊|🙂}
my token sad {😞|😟|🙁|☹|😢|😭|😥}
my token flag { <[🇦..🇿]> ** 2 }

\x1F1E6 \x1F1FF

sub describe($text) {
 say "Emotional" if $text ~~ /<happy> | <sad> /;
 say "Patriotic" if $text ~~ /<happy> <flag>/;
}

Regexen / Tokens
my token happy {😀|😃|😄|😁|😆|😊|🙂}
my token sad {😞|😟|🙁|☹|😢|😭|😥}
my token flag { <[🇦..🇿]> ** 2 }

\x1F1E6 \x1F1FF

sub describe($text) {
 say "Emotional" if $text ~~ /<happy> | <sad> /;
 say "Patriotic" if $text ~~ /<happy> <flag>/;
}

describe 'I got the job! 😁'; # Emotional
describe 'I failed the test 😢'; # Emotional
describe 'We won the gold! 😃🇺🇸'; # Patriotic

Regexen / Tokens
Tokens can also have code,

and can easily dictate how far to advance the token.

Regexen / Tokens

token foo {
 :my $advance = 0;

 {
 my $remainder = $/.orig.substr: $/.to;
 $advance = check $remainder;
 }

 . ** {$advance}
}

Tokens can also have code,
and can easily dictate how far to advance the token.

Regexen / Tokens

token foo {
 :my $advance = 0;

 <?{
 my $remainder = $/.orig.substr: $/.to;
 $advance = check $remainder;
 }>

 . ** {$advance}
}

Tokens can also have code,
and can easily dictate how far to advance the token.

Regexen / Tokens

token foo {
 :my $advance = 0;

 <?{
 my $remainder = $/.orig.substr: $/.to;
 $advance = check $remainder;
 }>

 . ** {$advance}
}

Tokens can also have code,
and can easily dictate how far to advance the token.

Don't forget the possibility of returning
0 but True to make a 0 a truthy valid

Modules that Just Work™
Showcase

(and how)

silently
quietly {
 say "HAHAHAHA I'm a small child and
 make lots of noise in libraries";
 warn "There's a fire in the lobby!";
}

There's a fire in the lobby!

silently {
 say "HAHAHAHA I'm a small child and
 make lots of noise in libraries";
 warn "There's a fire in the lobby!";
}

[no output]

silently
quietly {
 say "HAHAHAHA I'm a small child and
 make lots of noise in libraries";
 warn "There's a fire in the lobby!";
}

There's a fire in the lobby!

silently {
 say "HAHAHAHA I'm a small child and
 make lots of noise in libraries";
 warn "There's a fire in the lobby!";
}

[no output]

sub silently(&code) is export {
 my $captured := Captured.new(my $*OUT, my $*ERR);
 &code();
 $captured
}

silently
quietly {
 say "HAHAHAHA I'm a small child and
 make lots of noise in libraries";
 warn "There's a fire in the lobby!";
}

There's a fire in the lobby!

silently {
 say "HAHAHAHA I'm a small child and
 make lots of noise in libraries";
 warn "There's a fire in the lobby!";
}

[no output]

sub silently(&code) is export {
 my $captured := Captured.new(my $*OUT, my $*ERR);
 &code();
 $captured
}

Overwritten during building to a class that mimicks an
IO::Handle, but saves output to be returned

Cro
my $chat = Supplier.new;
get -> 'chat' {
 web-socket -> $incoming {
 supply {
 whenever $incoming -> $message {
 $chat.emit: await $message.body-text
 }
 whenever $chat -> $text {
 emit $text
 }
 }
 }
}

Cro
my $chat = Supplier.new;
get -> 'chat' {
 web-socket -> $incoming {
 supply {
 whenever $incoming -> $message {
 $chat.emit: await $message.body-text
 }
 whenever $chat -> $text {
 emit $text
 }
 }
 }
}

control word

control word

control word

sub

sub

Cro
my $chat = Supplier.new;
get -> 'chat' {
 web-socket -> $incoming {
 supply {
 whenever $incoming -> $message {
 $chat.emit: await $message.body-text
 }
 whenever $chat -> $text {
 emit $text
 }
 }
 }
}

control word

control word

control word

sub

sub

introspection of the signature allows this to be equivalent to get 'chat', { … },
but look a bit more Raku-ish

Cro
my $chat = Supplier.new;
get -> 'chat' {
 web-socket -> $incoming {
 supply {
 whenever $incoming -> $message {
 $chat.emit: await $message.body-text
 }
 whenever $chat -> $text {
 emit $text
 }
 }
 }
}

control word

control word

control word

sub

sub
value passed in when called

introspection of the signature allows this to be equivalent to get 'chat', { … },
but look a bit more Raku-ish

Red
model Post is rw {
 has Int $.id is serial;
 has Str $.title is unique;
 has Str $.body is column;
 has Int $!author-id is referencing{ :model<Person>, :column<id> };
 has $.author is relationship(*.author-id, :model<Person>);
}

model Person is rw {
 has Int $.id is serial;
 has Str $.name is column;
 has @.posts is relationship(*.author-id, :model<Post>);
}

Red
model Post is rw {
 has Int $.id is serial;
 has Str $.title is unique;
 has Str $.body is column;
 has Int $!author-id is referencing{ :model<Person>, :column<id> };
 has $.author is relationship(*.author-id, :model<Person>);
}

model Person is rw {
 has Int $.id is serial;
 has Str $.name is column;
 has @.posts is relationship(*.author-id, :model<Post>);
}

custom traits allow complex setup
to happen in the background

Because traits are subs, they can also accept
anything that a sub would as arguments:

custom declarator

Intl::Token::Number
my $text = "Houston is the most populous city in the U.S. state of Texas, fourth most populous city in the United States,
 most populous city in the Southern United States, as well as the sixth most populous in North America,
 with an estimated 2019 population of 2,320,268. Located in Southeast Texas near Galveston Bay and the Gulf
 of Mexico, it is the seat of Harris County and the principal city of the Greater Houston metropolitan area,
 which is the fifth most populous metropolitan statistical area in the United States and the second most
 populous in Texas after the Dallas-Fort Worth metroplex, with a population of 6,997,384 in 2018.

 Comprising a total area of 637.4 square miles (1,651 km2), Houston is the eighth most expansive city in the
 United States (including consolidated city-counties). It is the largest city in the United States by total
 area, whose government is not consolidated with that of a county, parish or borough. Though primarily in
 Harris County, small portions of the city extend into Fort Bend and Montgomery counties, bordering other
 principal communities of Greater Houston such as Sugar Land and The Woodlands.

 Houston's characteristic subtropical humidity often results in a higher apparent temperature, and summer
 mornings average over 90% relative humidity";

Intl::Token::Number
my $text = "Houston is the most populous city in the U.S. state of Texas, fourth most populous city in the United States,
 most populous city in the Southern United States, as well as the sixth most populous in North America,
 with an estimated 2019 population of 2,320,268. Located in Southeast Texas near Galveston Bay and the Gulf
 of Mexico, it is the seat of Harris County and the principal city of the Greater Houston metropolitan area,
 which is the fifth most populous metropolitan statistical area in the United States and the second most
 populous in Texas after the Dallas-Fort Worth metroplex, with a population of 6,997,384 in 2018.

 Comprising a total area of 637.4 square miles (1,651 km2), Houston is the eighth most expansive city in the
 United States (including consolidated city-counties). It is the largest city in the United States by total
 area, whose government is not consolidated with that of a county, parish or borough. Though primarily in
 Harris County, small portions of the city extend into Fort Bend and Montgomery counties, bordering other
 principal communities of Greater Houston such as Sugar Land and The Woodlands.

 Houston's characteristic subtropical humidity often results in a higher apparent temperature, and summer
 mornings average over 90% relative humidity";

for $text.match: /<local-number>/, :g -> $\ {
 say "{~$<local-number>} is equal to {+$<local-number>";
}

Intl::Token::Number
my $text = "Houston is the most populous city in the U.S. state of Texas, fourth most populous city in the United States,
 most populous city in the Southern United States, as well as the sixth most populous in North America,
 with an estimated 2019 population of 2,320,268. Located in Southeast Texas near Galveston Bay and the Gulf
 of Mexico, it is the seat of Harris County and the principal city of the Greater Houston metropolitan area,
 which is the fifth most populous metropolitan statistical area in the United States and the second most
 populous in Texas after the Dallas-Fort Worth metroplex, with a population of 6,997,384 in 2018.

 Comprising a total area of 637.4 square miles (1,651 km2), Houston is the eighth most expansive city in the
 United States (including consolidated city-counties). It is the largest city in the United States by total
 area, whose government is not consolidated with that of a county, parish or borough. Though primarily in
 Harris County, small portions of the city extend into Fort Bend and Montgomery counties, bordering other
 principal communities of Greater Houston such as Sugar Land and The Woodlands.

 Houston's characteristic subtropical humidity often results in a higher apparent temperature, and summer
 mornings average over 90% relative humidity";

for $text.match: /<local-number>/, :g -> $\ {
 say "{~$<local-number>} is equal to {+$<local-number>";
}

Intl::Token::Number
my $text = "Houston is the most populous city in the U.S. state of Texas, fourth most populous city in the United States,
 most populous city in the Southern United States, as well as the sixth most populous in North America,
 with an estimated 2019 population of 2,320,268. Located in Southeast Texas near Galveston Bay and the Gulf
 of Mexico, it is the seat of Harris County and the principal city of the Greater Houston metropolitan area,
 which is the fifth most populous metropolitan statistical area in the United States and the second most
 populous in Texas after the Dallas-Fort Worth metroplex, with a population of 6,997,384 in 2018.

 Comprising a total area of 637.4 square miles (1,651 km2), Houston is the eighth most expansive city in the
 United States (including consolidated city-counties). It is the largest city in the United States by total
 area, whose government is not consolidated with that of a county, parish or borough. Though primarily in
 Harris County, small portions of the city extend into Fort Bend and Montgomery counties, bordering other
 principal communities of Greater Houston such as Sugar Land and The Woodlands.

 Houston's characteristic subtropical humidity often results in a higher apparent temperature, and summer
 mornings average over 90% relative humidity";

for $text.match: /<local-number>/, :g -> $\ {
 say "{~$<local-number>} is equal to {+$<local-number>";
}

2019 is equal to 2019
2,320,268 is equal to 2320268
6,997,384 is equal to 6997384
2018 is equal to 2018
637.4 is equal to 637.4
1,651 is equal to 1651
2 is equal to 2
90% is equal to 0.9

Intl::Token::Number
my $text = "Houston is the most populous city in the U.S. state of Texas, fourth most populous city in the United States,
 most populous city in the Southern United States, as well as the sixth most populous in North America,
 with an estimated 2019 population of 2,320,268. Located in Southeast Texas near Galveston Bay and the Gulf
 of Mexico, it is the seat of Harris County and the principal city of the Greater Houston metropolitan area,
 which is the fifth most populous metropolitan statistical area in the United States and the second most
 populous in Texas after the Dallas-Fort Worth metroplex, with a population of 6,997,384 in 2018.

 Comprising a total area of 637.4 square miles (1,651 km2), Houston is the eighth most expansive city in the
 United States (including consolidated city-counties). It is the largest city in the United States by total
 area, whose government is not consolidated with that of a county, parish or borough. Though primarily in
 Harris County, small portions of the city extend into Fort Bend and Montgomery counties, bordering other
 principal communities of Greater Houston such as Sugar Land and The Woodlands.

 Houston's characteristic subtropical humidity often results in a higher apparent temperature, and summer
 mornings average over 90% relative humidity";

for $text.match: /<local-number>/, :g -> $\ {
 say "{~$<local-number>} is equal to {+$<local-number>";
}

2019 is equal to 2019
2,320,268 is equal to 2320268
6,997,384 is equal to 6997384
2018 is equal to 2018
637.4 is equal to 637.4
1,651 is equal to 1651
2 is equal to 2
90% is equal to 0.9

token wrapped by a method

Intl::Token::Number
my $text = "Houston is the most populous city in the U.S. state of Texas, fourth most populous city in the United States,
 most populous city in the Southern United States, as well as the sixth most populous in North America,
 with an estimated 2019 population of 2,320,268. Located in Southeast Texas near Galveston Bay and the Gulf
 of Mexico, it is the seat of Harris County and the principal city of the Greater Houston metropolitan area,
 which is the fifth most populous metropolitan statistical area in the United States and the second most
 populous in Texas after the Dallas-Fort Worth metroplex, with a population of 6,997,384 in 2018.

 Comprising a total area of 637.4 square miles (1,651 km2), Houston is the eighth most expansive city in the
 United States (including consolidated city-counties). It is the largest city in the United States by total
 area, whose government is not consolidated with that of a county, parish or borough. Though primarily in
 Harris County, small portions of the city extend into Fort Bend and Montgomery counties, bordering other
 principal communities of Greater Houston such as Sugar Land and The Woodlands.

 Houston's characteristic subtropical humidity often results in a higher apparent temperature, and summer
 mornings average over 90% relative humidity";

for $text.match: /<local-number>/, :g -> $\ {
 say "{~$<local-number>} is equal to {+$<local-number>";
}

2019 is equal to 2019
2,320,268 is equal to 2320268
6,997,384 is equal to 6997384
2018 is equal to 2018
637.4 is equal to 637.4
1,651 is equal to 1651
2 is equal to 2
90% is equal to 0.9

token wrapped by a method

wrapping mixes in a role with a .Numeric method

Test::Inline
unit module Rectangle;

use Test::Inline;

has Point $.a; # bottom left
has Point $.b; # top right

sub calculate-area($x, $y) { $x * $y }
sub distance($a, $b) { abs $a - $b }

method area {
 calculate-area
 distance($!a.x, $!b.x),
 distance($!a.y, $!b.y)
}

method overlap(Rectangle $other) { ... }

sub t-distance is test {
 use Test;
 is distance(2, 4), 2, "+/+";
 is distance(-2, 4), 6, "-/+";
 is distance(-2,-1), 1, "-/-";
}

sub t-area is test {
 use Test;
 is ……… , "area A";
 is ……… , "area B";
}

Test::Inline
unit module Rectangle;

use Test::Inline;

has Point $.a; # bottom left
has Point $.b; # top right

sub calculate-area($x, $y) { $x * $y }
sub distance($a, $b) { abs $a - $b }

method area {
 calculate-area
 distance($!a.x, $!b.x),
 distance($!a.y, $!b.y)
}

method overlap(Rectangle $other) { ... }

sub t-distance is test {
 use Test;
 is distance(2, 4), 2, "+/+";
 is distance(-2, 4), 6, "-/+";
 is distance(-2,-1), 1, "-/-";
}

sub t-area is test {
 use Test;
 is ……… , "area A";
 is ……… , "area B";
}

use Test;
use Test::Inline, :testing;

use Rectangle;

my $r = Rectangle.new:
 a => Point.new(2,3),
 b => Point.new(5,6);

is $r.a.x, 2, "x";
is $r.b.y, 6, "y";

inline-testing;

done-testing;

Test::Inline
unit module Rectangle;

use Test::Inline;

has Point $.a; # bottom left
has Point $.b; # top right

sub calculate-area($x, $y) { $x * $y }
sub distance($a, $b) { abs $a - $b }

method area {
 calculate-area
 distance($!a.x, $!b.x),
 distance($!a.y, $!b.y)
}

method overlap(Rectangle $other) { ... }

sub t-distance is test {
 use Test;
 is distance(2, 4), 2, "+/+";
 is distance(-2, 4), 6, "-/+";
 is distance(-2,-1), 1, "-/-";
}

sub t-area is test {
 use Test;
 is ……… , "area A";
 is ……… , "area B";
}

use Test;
use Test::Inline, :testing;

use Rectangle;

my $r = Rectangle.new:
 a => Point.new(2,3),
 b => Point.new(5,6);

is $r.a.x, 2, "x";
is $r.b.y, 6, "y";

inline-testing;

done-testing;

ok 1 - x
ok 2 - y
 is 1 - +/+
 is 2 - -/+
 is 3 - -/-
 1..3
 ok 1 - sub t-distance
 is 1 - area A
 is 2 - area B
 1..2
 ok 1 - sub t-area
 1..2
 ok 1 - Package Rectangle
 1..1
ok 3 - Inline testing

Test::Inline
unit module Rectangle;

use Test::Inline;

has Point $.a; # bottom left
has Point $.b; # top right

sub calculate-area($x, $y) { $x * $y }
sub distance($a, $b) { abs $a - $b }

method area {
 calculate-area
 distance($!a.x, $!b.x),
 distance($!a.y, $!b.y)
}

method overlap(Rectangle $other) { ... }

sub t-distance is test {
 use Test;
 is distance(2, 4), 2, "+/+";
 is distance(-2, 4), 6, "-/+";
 is distance(-2,-1), 1, "-/-";
}

sub t-area is test {
 use Test;
 is ……… , "area A";
 is ……… , "area B";
}

use Test;
use Test::Inline, :testing;

use Rectangle;

my $r = Rectangle.new:
 a => Point.new(2,3),
 b => Point.new(5,6);

is $r.a.x, 2, "x";
is $r.b.y, 6, "y";

inline-testing;

done-testing;

unit module Inline;

my Sub @tests;

#| Marks a sub as being for internal test purposes
multi sub trait_mod:<is>(Sub $sub, :$test!) is export {
 @tests.push: $sub if $test;
}

#| Calls all subs marked as 'is test' in loaded modules
sub inline-testing is export(:testing) {
 use Test;

 # Provided by the Test module
 subtest {
 for @tests.categorize(*.package.^name).sort(*.key)
 -> (:key($package), :value(@subs)) {

 subtest {
 for @subs.sort(*.name) -> &test {
 subtest { test }, "sub {&test.name}";
 }
 }, "Package $package";
 }
 }, "Inline testing";
}

ok 1 - x
ok 2 - y
 is 1 - +/+
 is 2 - -/+
 is 3 - -/-
 1..3
 ok 1 - sub t-distance
 is 1 - area A
 is 2 - area B
 1..2
 ok 1 - sub t-area
 1..2
 ok 1 - Package Rectangle
 1..1
ok 3 - Inline testing

Intl::LanguageTag

class LanguageTag {
 method new (Str() $tag) {
 self.bless: …
 }
 method Str($?CLASS:D:) {
 # reverse of the above
 }
}

sub foo (LanguageTag() $x) {
 say $x.region
}

foo 'en-US' # errors!

Intl::LanguageTag

class LanguageTag {
 method new (Str() $tag) {
 self.bless: …
 }
 method Str($?CLASS:D:) {
 # reverse of the above
 }
 method COERCE(Str $tag) {
 self.new: $tag
 }
}

sub foo (LanguageTag() $x) {
 say $x.region
}

foo 'en-US' # '[Region:US]'

Here there be dragons

Here there be dragonflies?

Slang::SQL
my $*DB = DBIish.connect('SQLite', :database<sqlite.sqlite3>);

sql drop table if exists stuff; #runs 'drop table if exists stuff';

sql create table if not exists stuff (
 id integer,
 sid varchar(32)
);

for ^5 {
 sql insert into stuff (id, sid)
 values (?, ?); with ($_, ('A'..'Z').pick(16).join);
}

sql select * from stuff order by id asc; do -> $row {
 FIRST "{$*STATEMENT}id\tsid".say;
 "{$row<id>}\t{$row<sid>}".say;
};

Slang::SQL
my $*DB = DBIish.connect('SQLite', :database<sqlite.sqlite3>);

sql drop table if exists stuff; #runs 'drop table if exists stuff';

sql create table if not exists stuff (
 id integer,
 sid varchar(32)
);

for ^5 {
 sql insert into stuff (id, sid)
 values (?, ?); with ($_, ('A'..'Z').pick(16).join);
}

sql select * from stuff order by id asc; do -> $row {
 FIRST "{$*STATEMENT}id\tsid".say;
 "{$row<id>}\t{$row<sid>}".say;
};

Because of the flexibility inherent in Raku, the
primary use for slangs will likely be creating

special quoting languages.

Because of the flexibility inherent in Raku, the
primary use for slangs will likely be creating

special quoting languages.
Effectively, these will be akin to

Because of the flexibility inherent in Raku, the
primary use for slangs will likely be creating

special quoting languages.
Effectively, these will be akin to

Because of the flexibility inherent in Raku, the
primary use for slangs will likely be creating

special quoting languages.
Effectively, these will be akin to

 sub circumfix:<sql ;> { … } # sql
 sub circumfix:<bx/ /> { … } # binex

Because of the flexibility inherent in Raku, the
primary use for slangs will likely be creating

special quoting languages.
Effectively, these will be akin to

 sub circumfix:<sql ;> { … } # sql
 sub circumfix:<bx/ /> { … } # binex

Except that they will allow the circumfixed content to
behave differently, not unlike how rx/…/ or Q:…:

works today.

Because of the flexibility inherent in Raku, the
primary use for slangs will likely be creating

special quoting languages.
Effectively, these will be akin to

 sub circumfix:<sql ;> { … } # sql
 sub circumfix:<bx/ /> { … } # binex

Except that they will allow the circumfixed content to
behave differently, not unlike how rx/…/ or Q:…:

works today.

As RakuAST is committed to core, it will be even
easier to integrate them at the same level that Q or

Regex is in Raku.

All this said …

All this said …

It is possible to mimic quite a few bits of the main
Raku language without needing to jump into slangs.

All this said …

It is possible to mimic quite a few bits of the main
Raku language without needing to jump into slangs.

So, we can avoid the realm of dragon(flie)s and still do
some surprisingly cool things, while functioning in utterly

unsurprising ways for our users.

Here there be dragonsdragonfliesModule Development Checklist

Here there be dragonsdragonfliesModule Development Checklist
1. Think how the user would want to use your module.

Here there be dragonsdragonfliesModule Development Checklist
1. Think how the user would want to use your module.

• Avoid boilerplate

Here there be dragonsdragonfliesModule Development Checklist
1. Think how the user would want to use your module.

• Avoid boilerplate
• …while still providing options

Here there be dragonsdragonfliesModule Development Checklist
1. Think how the user would want to use your module.

• Avoid boilerplate
• …while still providing options

2. Avoid putting your module in a bubble

Here there be dragonsdragonfliesModule Development Checklist
1. Think how the user would want to use your module.

• Avoid boilerplate
• …while still providing options

2. Avoid putting your module in a bubble
• Provide logical ACCEPT, COERCE, Str,

and Numeric methods.

Here there be dragonsdragonfliesModule Development Checklist
1. Think how the user would want to use your module.

• Avoid boilerplate
• …while still providing options

2. Avoid putting your module in a bubble
• Provide logical ACCEPT, COERCE, Str,

and Numeric methods.
• Go beyond a mere class/sub

Here there be dragonsdragonfliesModule Development Checklist
1. Think how the user would want to use your module.

• Avoid boilerplate
• …while still providing options

2. Avoid putting your module in a bubble
• Provide logical ACCEPT, COERCE, Str,

and Numeric methods.
• Go beyond a mere class/sub
• Support multiple paradigms/use cases

by embracing Raku's native flexibility

Here there be dragonsdragonfliesModule Development Checklist
1. Think how the user would want to use your module.

• Avoid boilerplate
• …while still providing options

2. Avoid putting your module in a bubble
• Provide logical ACCEPT, COERCE, Str,

and Numeric methods.
• Go beyond a mere class/sub
• Support multiple paradigms/use cases

by embracing Raku's native flexibility
3. Document (whole ’nother talk)

Here there be dragonsdragonfliesModule Development Checklist
1. Think how the user would want to use your module.

• Avoid boilerplate
• …while still providing options

2. Avoid putting your module in a bubble
• Provide logical ACCEPT, COERCE, Str,

and Numeric methods.
• Go beyond a mere class/sub
• Support multiple paradigms/use cases

by embracing Raku's native flexibility
3. Document (whole ’nother talk)
4. Surprise the user with Raku-ish mundanity

Any questions?

Or after the presentation:
guifa on #raku

alabamenhu on github
mateu@softastur.org

