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There is no best index for every case

● The most used index is B-tree but we don't have ordering for some data  (spatial etc.)

non-ordered B-tree

SP-GiST
inacc

ura
te

Index is based on an idea about data we have in the column.
(the data we request often consists of different column types)
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...that is why PostgreSQL has so many of them!



Multicolumn index

All columns are index-ordered

PROS:

● index-only scans on several indexed columns

● can select with all indexed columns under WHERE clause 

CONS:

● only columns of data types with the index opclass can be added

● index size and performance depend on columns order: lower 
cardinality column should be put first (we should know cardinality 
a priori)

● inefficient if the first columns have many unique values

Some indexes are single-column by design: SP-GiST

CREATE INDEX idx ON db USING gist(key_column_1, key_column_2, 
key_column_42);
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(very simplified)



Covering index

PROS:

● Increases the number of columns for fast index-only SELECTs

● Included columns can be with any data type (index opclass is needed 
only for key columns)

● Is more lightweight than multicolumn one

CONS:

● Can not help for SELECTs with non-key columns under WHERE clause

Only key columns are index-ordered. The included columns are 
without order. They are present only in leaf tuples, not inside the 
search tree

Available in Btree, GiST, SP-GiST(not committed yet)

CREATE INDEX idx ON db USING spgist(key_column) 
INCLUDE(include_column_1, include_column_2);
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Generalized trees: GiST and SP-GiST

`

k-D treer-tree

● All space is to be partitioned
● Single-column
● Better Knn for many dimensions
Do we really gain from the covering 
SP-GiST?
(it is still a proposal: https://commitfest.postgresql.org/31/2675/)

● MBRs are built 
around 'points' only

● Can be multicolumn 
and covering

GiST SP-GiST



Table "mowboxes_rnd" 
  Column  |       Type      
----------+------------------
 ip       | cidr                 
 num      | integer           
 center   | point             
 bounds   | box               
 tsbounds | tsrange          
 text     | character varying

8M rows, 5.6 Gb, random order

   

Benchmark GiST vs SP-GiST
The problem: select all ip's and bounds, containing some given 
small region (or point). 



Benchmark GiST vs SP-GiST
Create Index using…
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spgist(bounds);

spgist(bounds) include (ip);

Since v.14, 2-times faster ordered GiST index can be built for points, but not for 
boxes. (A. Borodin, https://commitfest.postgresql.org/29/2276/)



Select's Benchmark Setup

SELECT ip, bounds FROM mowboxes_rnd WHERE bounds @> small::box

small is a box (0.001x0.001) size and with random coordinate in a square area (1x1) size

 

The problem: select all ip's and bounds, containing some given 
small region. 

In a set of 10000 of small's some will be in a
● densely populated area (up to many thousand rows result)
● more deserted region (from hundreds of rows result)

Next, we will look at the query time vs number of rows graph.

QUERY PLAN
-----------------------------------
 Index Only Scan using mowboxes_spgist_include on mowboxes_rnd  
(cost=0.41..428.99 rows=7804 width=39)
 (actual time=0.059..13.729 rows=22203 loops=1)
   Index Cond: (bounds @> '(37.601,55.701),(37.6,55.7)'::box)
   Heap Fetches: 0
   Buffers: shared hit=16337
 Planning Time: 0.150 ms
 Execution Time: 15.620 ms

QUERY PLAN
----------------------------------
 Bitmap Heap Scan on mowboxes_rnd  
(cost=308.90..28778.60 rows=7804 width=39) 
(actual time=13.489..33.109 rows=22203 loops=1)
   Recheck Cond: (bounds @> '(37.601,55.701),(37.6,55.7)'::box)
   Heap Blocks: exact=21851
   Buffers: shared hit=23528
   ->  Bitmap Index Scan on mowboxes_spgist
(cost=0.00..306.94 rows=7804 width=0) 
(actual time=9.328..9.328 rows=22203 loops=1)
         Index Cond: (bounds @> '(37.601,55.701),(37.6,55.7)'::box)
         Buffers: shared hit=1677
 Planning Time: 0.179 ms
 Execution Time: 34.834 ms

explain (ANALYZE, BUFFERS) SELECT bounds, ip FROM mowboxes_rnd WHERE bounds @> box(point(37.6, 55.7), point(37.601, 55.701));



Benchmark GiST vs SP-GiST

Index and table in 
memory



In-memory benchmark

Query time distribution 

● Index-only scan is faster than bitmap scan even for in-
memory case.

● SP-GiST is faster than GiST and is more lightweight.

(log scale, real areas are equal)



Benchmark GiST vs SP-GiST

Index in memory.

Table needs disc 
access



Disc+memory benchmark

Query time distribution

● Queries that return many results need disc access for bitmap 
scan and become many times slower. 

● Index-only scan on covering index makes them much faster.

(log scale, real areas are equal)



Table updates benchmark

pgbench postgres -c 60 -j 60 -n -M prepared -T 300 -P 1 -f ./pgbench-update-zipfian.sql

\SET id random_zipfian(1, 8000000 * :scale, 2) # Zipfian factor up to 5

\SET delta ( random(1, 2000000)/1000000 - 1 )  # Coordinate shift in range +/- 1 degree 

...

UPDATE mowboxes_rnd SET bounds = bounds + point(:delta,:delta) WHERE id = :id;

When table records are updated, index should also be 
updated. This slows down the updates of indexed records.

Benchmark setup:
● Reads should not use SP-GiST, only updates → add primary key (id) 

● The change in bounds coordinates is big enough for the record to jump to 
another branch in a k-D tree

● Zipfian distribution of the updated records is used to emulate real load



Table updates benchmark
A little slowdown is seen as the index fits the shared memory
(no difference for covering and non-covering index)

NB: the test is limited to the laptop performance, generally results can differ 
more

spgist (bounds) include (ip)no index



Use cases for SP-GiST covering

Consider covering SP-GiST when you expect:
● Selects with WHERE clause on single column:

● of spatial data (2+ dimensional)
● with the SP-GiST opclass and values close to unique  

(e.g. prefix tree on URL's etc.)  

● Selects for several columns output

Also you may not care if you expect requests to the 
columns without the SP-GiST opclass.

`



Summary

● For spatial data SP-GiST index is often faster than GiST 

● If index-only scans are possible, they can improve performance 
dramatically (this applies to any index)

● Included columns in a covering index allow data types without 
index-supported opclass

● Covering indexes generally have less overhead than multicolumn 
ones and work better when first column(s) has values close to 
unique.

Thanks! Your questions are welcome!
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