
www.postgrespro.com

Performance improvements and new usage
scenarios for SPGiST access method

Pavel Borisov

About author

● Works on the PostgreSQL core features improvement:
• indexing,
• fast text search,
• declarative partitioning

● Reviewer in the community of PostgreSQL developers.

● Involved in the development of Postgres Pro DBMS, the fork of a
PostgresSQL.

Pavel Borisov

p.borisov@postgrespro.com

There is no best index for every case

● The most used index is B-tree but we don't have ordering for some data (spatial etc.)

non-ordered B-tree

SP-GiST
inacc

ura
te

Index is based on an idea about data we have in the column.
(the data we request often consists of different column types)

GIN

BRIN

GiSTHash

com
pound

ex
te

ns
io

nsRUM

...that is why PostgreSQL has so many of them!

Multicolumn index

All columns are index-ordered

PROS:

● index-only scans on several indexed columns

● can select with all indexed columns under WHERE clause

CONS:

● only columns of data types with the index opclass can be added

● index size and performance depend on columns order: lower
cardinality column should be put first (we should know cardinality
a priori)

● inefficient if the first columns have many unique values

Some indexes are single-column by design: SP-GiST

CREATE INDEX idx ON db USING gist(key_column_1, key_column_2,
key_column_42);

key_column_1

key_column_2

idx

42

777

1

node leaf

1 26

42

777

1

42

1

1

777

2-column index
(very simplified)

Covering index

PROS:

● Increases the number of columns for fast index-only SELECTs

● Included columns can be with any data type (index opclass is needed
only for key columns)

● Is more lightweight than multicolumn one

CONS:

● Can not help for SELECTs with non-key columns under WHERE clause

Only key columns are index-ordered. The included columns are
without order. They are present only in leaf tuples, not inside the
search tree

Available in Btree, GiST, SP-GiST(not committed yet)

CREATE INDEX idx ON db USING spgist(key_column)
INCLUDE(include_column_1, include_column_2);

key_column_1

include_column_1

idx

42

1

node leaf

1
26

42

3

1

42

1

1

1

not o
rde

red

Covering index
(very simplified)

Generalized trees: GiST and SP-GiST

`

k-D treer-tree

● All space is to be partitioned
● Single-column
● Better Knn for many dimensions
Do we really gain from the covering
SP-GiST?
(it is still a proposal: https://commitfest.postgresql.org/31/2675/)

● MBRs are built
around 'points' only

● Can be multicolumn
and covering

GiST SP-GiST

Table "mowboxes_rnd"
 Column | Type
----------+------------------
 ip | cidr
 num | integer
 center | point
 bounds | box
 tsbounds | tsrange
 text | character varying

8M rows, 5.6 Gb, random order

Benchmark GiST vs SP-GiST
The problem: select all ip's and bounds, containing some given
small region (or point).

Benchmark GiST vs SP-GiST
Create Index using…

size, MB time, s
0

100

200

300

400

500

600

700

800

gist(bounds)

gist(bounds) include (ip)

spgist(bounds);

spgist(bounds) include (ip);

Since v.14, 2-times faster ordered GiST index can be built for points, but not for
boxes. (A. Borodin, https://commitfest.postgresql.org/29/2276/)

Select's Benchmark Setup

SELECT ip, bounds FROM mowboxes_rnd WHERE bounds @> small::box

small is a box (0.001x0.001) size and with random coordinate in a square area (1x1) size

The problem: select all ip's and bounds, containing some given
small region.

In a set of 10000 of small's some will be in a
● densely populated area (up to many thousand rows result)
● more deserted region (from hundreds of rows result)

Next, we will look at the query time vs number of rows graph.

QUERY PLAN

 Index Only Scan using mowboxes_spgist_include on mowboxes_rnd
(cost=0.41..428.99 rows=7804 width=39)
 (actual time=0.059..13.729 rows=22203 loops=1)
 Index Cond: (bounds @> '(37.601,55.701),(37.6,55.7)'::box)
 Heap Fetches: 0
 Buffers: shared hit=16337
 Planning Time: 0.150 ms
 Execution Time: 15.620 ms

QUERY PLAN

 Bitmap Heap Scan on mowboxes_rnd
(cost=308.90..28778.60 rows=7804 width=39)
(actual time=13.489..33.109 rows=22203 loops=1)
 Recheck Cond: (bounds @> '(37.601,55.701),(37.6,55.7)'::box)
 Heap Blocks: exact=21851
 Buffers: shared hit=23528
 -> Bitmap Index Scan on mowboxes_spgist
(cost=0.00..306.94 rows=7804 width=0)
(actual time=9.328..9.328 rows=22203 loops=1)
 Index Cond: (bounds @> '(37.601,55.701),(37.6,55.7)'::box)
 Buffers: shared hit=1677
 Planning Time: 0.179 ms
 Execution Time: 34.834 ms

explain (ANALYZE, BUFFERS) SELECT bounds, ip FROM mowboxes_rnd WHERE bounds @> box(point(37.6, 55.7), point(37.601, 55.701));

Benchmark GiST vs SP-GiST

Index and table in
memory

In-memory benchmark

Query time distribution

● Index-only scan is faster than bitmap scan even for in-
memory case.

● SP-GiST is faster than GiST and is more lightweight.

(log scale, real areas are equal)

Benchmark GiST vs SP-GiST

Index in memory.

Table needs disc
access

Disc+memory benchmark

Query time distribution

● Queries that return many results need disc access for bitmap
scan and become many times slower.

● Index-only scan on covering index makes them much faster.

(log scale, real areas are equal)

Table updates benchmark

pgbench postgres -c 60 -j 60 -n -M prepared -T 300 -P 1 -f ./pgbench-update-zipfian.sql

\SET id random_zipfian(1, 8000000 * :scale, 2) # Zipfian factor up to 5

\SET delta (random(1, 2000000)/1000000 - 1) # Coordinate shift in range +/- 1 degree

...

UPDATE mowboxes_rnd SET bounds = bounds + point(:delta,:delta) WHERE id = :id;

When table records are updated, index should also be
updated. This slows down the updates of indexed records.

Benchmark setup:
● Reads should not use SP-GiST, only updates → add primary key (id)

● The change in bounds coordinates is big enough for the record to jump to
another branch in a k-D tree

● Zipfian distribution of the updated records is used to emulate real load

Table updates benchmark
A little slowdown is seen as the index fits the shared memory
(no difference for covering and non-covering index)

NB: the test is limited to the laptop performance, generally results can differ
more

spgist (bounds) include (ip)no index

Use cases for SP-GiST covering

Consider covering SP-GiST when you expect:
● Selects with WHERE clause on single column:

● of spatial data (2+ dimensional)
● with the SP-GiST opclass and values close to unique

(e.g. prefix tree on URL's etc.)

● Selects for several columns output

Also you may not care if you expect requests to the
columns without the SP-GiST opclass.

`

Summary

● For spatial data SP-GiST index is often faster than GiST

● If index-only scans are possible, they can improve performance
dramatically (this applies to any index)

● Included columns in a covering index allow data types without
index-supported opclass

● Covering indexes generally have less overhead than multicolumn
ones and work better when first column(s) has values close to
unique.

Thanks! Your questions are welcome!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

