
Getting on a hook

or PostgreSQL extensibility

Alexey Kondratov

Postgres Professional

PostgreSQL @ FOSDEM’21, February 6-7

PostgreSQL extensibility

o Custom types, operators.

o Access methods.

o PL/pgSQL scripting language.

o Functions, triggers, extensions and so on.

o …

2[1] https://www.postgresql.org/docs/current/extend.html

}A lot of info in the docs [1].

https://www.postgresql.org/docs/current/extend.html

PostgreSQL extensibility

o Custom types, operators.

o Access methods.

o PL/pgSQL scripting language.

o Functions, triggers, extensions and so on.

o …

o Hooks (and callbacks).

3[1] https://www.postgresql.org/docs/current/extend.html

}A lot of info in the docs [1].

https://www.postgresql.org/docs/current/extend.html

What is a hook?

o Function or more precisely a global pointer to a function.

o Being defined it will be called by PostgreSQL at some specific
moment.

o Scattered all over the PostgreSQL core.

o Extensions (shared libraries) can set these hooks to peek into the
PostgreSQL internal state.

4

Hooks: pointer

5

execMain.c

Executed if defined

Hooks: installation

6

pg_stat_statements.c: _PG_init()

1) Remember previously defined value 2) Register your own function

Hooks: design

7

pg_stat_statements.c

Do not forget to call your predecessor!

Hooks: overview

8

ExecutorStart_hook(queryDesc, eflags)

ExecutorEnd_hook(queryDesc)

post_parse_analyze_hook(pstate, query)

[1] Original diagram is from http://www.interdb.jp/pg/pgsql03.html.

[1]

planner_hook(parse, query_string, …)

ClientAuthentication_hook(port, status)

http://www.interdb.jp/pg/pgsql03.html

Hooks: unofficial documentation

o GitHub repo: https://github.com/AmatanHead/psql-hooks

o Lists hook arguments.

o Has text description.

o pgPedia: https://pgpedia.info/h/hooks.html

o There is an interesting change history 
with commit reference per hook.

o A bit outdated Guillaume Lelarge’s slides from PGCon 2012.

9

https://github.com/AmatanHead/psql-hooks
https://pgpedia.info/h/hooks.html
https://wiki.postgresql.org/images/e/e3/Hooks_in_postgresql.pdf
https://www.pgcon.org/2012/schedule/events/466.en.html

What is a callback?
o Very similar to the hooks.

o But initially designed to be set by multiple users.

o Usually installed by Register*Callback() setter functions:
RegisterXactCallback(), RegisterSubXactCallback(),
RegisterExprContextCallback(), etc.

o Yet, there are others like: before_shmem_exit(), on_shmem_exit().

o Mostly for internal usage.

10

Callbacks: registration

11

postgres_fdw/connection.c

Run setter function to register your own callback

Callbacks: setter function

12

xact.c

Keeps a list of registered callbacks

Example time

13

Distributed PostgreSQL

14

Distributed DDL

o Broadcast specific (or all) DDL across a number of PostgreSQL nodes.

o Create distributed (sharded / partitioned) tables with familiar interface
extend CREATE TABLE statement syntax.

o This operation should be atomic, i.e. either committed or aborted on all
PostgreSQL instances use two-phase commit (2PC).

o Do everything from the extension no core modifications!

→

→

→

15

Standard DDL processing

16

o Get query from the client.

o Parse and plan it.

o Pass it to the standard_ProcessUtility().

Distributed DDL: broadcast

17

Utility hook receives:

o Raw text of the statement.

o Planned statement.

o So it can decide whether

to send this DDL to
other servers or not [1].

[1] Source code of broadcast example can be found on GitHub postgrespro/shardman.

https://github.com/postgrespro/shardman/blob/38d094d1d1931f415099d90faea170b5c9261e41/ext/shardman.c#L111

Distributed DDL: syntax extension

18

We would like to add some additional parameters to
CREATE TABLE syntax (e.g. number of partitions,
partitioning column name).

Distributed DDL: syntax extension

19

Luckily, not a ‘syntax error’, so parameters
are not processed by the parser itself!

Distributed DDL: syntax extension

20

1. Notice, remember and
remove known additional
parameters.

2. Process statement taking into
account the specified parameters
(i.e. add partitioning info, create
partitions as well, do broadcast).

Distributed DDL: atomicity

o Without 2PC, transaction might end up COMMITTED on some nodes
and ABORTED on others.

o 2PC introduces an intermediate state — PREPARED.

o PostgreSQL already has a 2PC infrastructure.

21

22

Transaction (xact) callback
is used by postgres_fdw to:

1. Commit all foreign
transactions first.

2. Proceed to local commit.

Distributed DDL: transaction

23

At stage (1) it is too late to
abort local transaction and if
we will fail to commit all
remote xacts, then some of
them may be left in the
PREPARED state (2). In this
case some additional process
(resolver) have to either
commit them or abort based
on the coordinator state.

Distributed DDL: 2PC

Simple patch prototype, which adds 2PC into postgres_fdw can be found in the pgsql-hackers mailing list.

https://www.postgresql.org/message-id/3ef7877bfed0582019eab3d462a43275@postgrespro.ru

24

Feedback

If you have any questions or comments:

o kondratov.aleksey@gmail.com

o github.com/ololobus

o twitter.com/ololobuss

Thank you!

mailto:kondratov.aleksey@gmail.com
https://github.com/ololobus
https://twitter.com/ololobuss

