)

Database Performance
at Gitlab.com

Jose Cores Finotto,
GitLab,
Staff Database Reliability Engineer

Nikolay Samokhvalov,
Postgres.ai,
Founder

Speaker: Jose Cores Finotto

e My name is Jose Cores Finotto | work
with the Infrastructure team at
GitLab.

e | have been a part of the GitLab
team since September 2018.

e Background in large organizations
with extensive experience in
Infrastructure, especially in
relational databases.

Speaker: Nikolay Samokhvalov
o Database systems: o
B Lorverco
o 2002-2005:

o since 2005: PostgreSQI_

o Worked on XML data type and functions (2005-2007)

o Long-term community activist — #RuPostqgres, Postqgres.tv

o Conferences Program Committee Ml highload™ giﬁ'Fe"d PGIBZE et

o Currentbusiness: =3 Pogtg res.al

http://rupostgres.org
http://postgres.tv

Agenda

e GitLab
e Architecture and challenges
e Performance analysis

e postgres-checkup

Joe Bot & Database Lab

Gitlab Values

Collaboration

Work asynchronously

with fully remote
workforce (org)

Use GitLab to build
GitLab, there’s an Issue
and/or Merge Request
for everything

Results

Track outcomes,
not hours

Efficiency

Straightforward
solutions win.
Complexity slows
cycle time.

Diversity

Remote-only tends toward

global diversity, but we still

have a ways to go.

Hire those who add to culture,
not those who fit with it. We

want cultural diversity

instead of cultural conformity.

Iteration

Minimum Viable
Change (MVC) if the
change is better than
the existing solution,
ship it.

Transparency

Everything at GitLab
is public by default:
Strategy, Roadmap,
Quarterly Goals

Handbook, and Issue
Trackers

https://about.gitlab.com/company/team/
https://about.gitlab.com/company/team/
https://about.gitlab.com/company/team/org-chart/
https://about.gitlab.com/strategy/
https://about.gitlab.com/direction/
https://about.gitlab.com/okrs/
https://about.gitlab.com/handbook
https://gitlab.com/gitlab-org/gitlab-ce/issues?scope=all&utf8=%E2%9C%93&state=opened
https://gitlab.com/gitlab-org/gitlab-ce/issues?scope=all&utf8=%E2%9C%93&state=opened

The open source project

The open source project

Used by more than A community of
organizations code contributors

We release every month on the 22nd and there is a publicly viewable direction for the product.

Learn more from our blog >

The company

The company

GitLab Inc. is an open-core company that sells subscriptions that offer more features and support for GitLab.

Learn about open core =

GitLab, the product is a complete DevOps platform, delivered as a single application, fundamentally
changing the way Development, Security, and Ops teams collaborate.

Learn more about our product >

All remote with Over Located in

1297 30 er
million

actirmatad racictarad 11care

countries

The Company

2011

GitLab, the open source project began.

Q)

Most of our internal procedures can
be found in a publicly viewable
5000+ page handbook and our
objectives are documented in our
OKRs.

Our values are Collaboration,
Results, Efficiency, Diversity,
Inclusion & Belonging, Iteration,
and Transparency (CREDIT) and
these form an important part of our
culture.

2015

We joined Y Combinator and started growing faster.

<

>

Join our team.

Our mission is to change all creative
work from read-only to read-write so
that everyone can contribute. This
is part of our overall strategy.

Our Tanuki (Japanese for raccoon
dog) logo symbolizes our values
with a smart animal that works in a
group to achieve a common goal,
you can download it on our press

page.

Ag} GitLab

A

Manage

Subgroups

Audit Events

GitLabisa
Audit Reports
complete
DevOps
P Compliance
platforim, Management
delivered g
o .a single Code Analytics
application.

DevOps Reports

Value Stream
Management

Insights

&

Plan

Issue Tracking
Time Tracking
Boards
Epics
Roadmaps
Service Desk

Requirements
Management

Quality
Management

Design
Management

The definitive guide to remote work Download the playbook

Discover a more streamliped way to work

2

Create
Source Code
Management
Code Review

Wiki
Static Site Editor
Web IDE
Live Preview

Snippets

Product

>

-@
Verify
Continuous
Integration (CI)
Code Quality

Code Testing
and Coverage

Load Testing

Web
Performance

Usability Testing

Accessibility
Testing

Merge Trains

Pricing

Package
Package
Registry

Container
Registry

Helm Chart
Registry

Dependency
Proxy

Release
Evidence

GitLFS

Resources

=

Secure

SAST
DAST
Fuzz Testing

Dependency
Scanning

License
Compliance

Secret Detection

Vulnerability
Management

Blog

&
Zs
Release
Continuous
Delivery
Pages
Review Apps

Advanced
Deployments

Feature Flags

Release
Orchestration

Secrets
Management

Support

Elpsd g
Configure

Auto DevOps

Kubernetes
Management

ChatOps
Serverless

Infrastructure as
Code

Cluster Cost
Management

Install GitLab

Explore

—
)

Monitor

Runbooks
Metrics

Incident
Management

Logging
Tracing
Error Tracking

Product
Analytics

Signin Q

s
Protect
Container
Scanning

Container Host
Security

Container
Network
Security

Get free trial

Feature development matrix

Exponential rate of product improvement

e Oauth b
e Group Support
e GitLab Shell Milestones e GitLab.com ®
e Cl e Groups e Audit Logs e Cl| Runner
e Source Code o Wiki e Side by Side e Multiple LDAP e Docker e
e Issues e Labels Diff servers Support o
2011 2012 2013 2014 2015 2016

about.gitlab.com/direction

Pipelines
Container
Registry
Environments
Issue Boards
Cycle
Analytics
Time
Tracking
Review Apps
Auto Deploy

2017

e Board
Milestones

e Deploy
Boards

e Prometheus
Integration

e Burndown
Charts

e Canary
Deploy

e Code Quality

e Auto DevOps
Beta

e Kubernetes

e Epics

e SAST

2018

DAST
Web IDE
Incremental

Deploy

Auto DevOps
Licence
Management
Tracing
Feature
Flags

Load
Testing
Anomaly
Alerts
Security
Dashboard
Alerting
Framework
App Control
Panel

Binary
Repository
APM/Tracing
Prod
Monitoring
Error Tracking
Logging

GitLab.com in numbers:

We have a hosted version of Gitlab:

e Over 40 million daily git pull operations.

e More than 6k git requests per second.

e 750.000 git pushes a day.

e 60k to 80k transactions per second on the database
e 7 databasereplicasand 1 primary

e Databasesize:9TiB

e Hardware architecture GCP 96 cores with 624 GiB of RAM.

Current Architecture

Read-Write Read-Write Read-Only

Async Traffic Sync Traffic Traffic

Internal Load Internal Load S .
Balancer BaloFoor Application Load Balancing

v

Patroni Agent Patroni Agent Patroni Agent Patroni Agent

Consul Agent
Consul Agent Consul Agent Consul Agent

Consul Server ¢ 2 Consul Server 2 Consul Server

Performance degradation analysis

Database performance peak - 12 of January - 16:06 AM

The following CPU utilization peak started at 16:05, reaching 87%:

patroni-06-db-gprd.c.gitlab-production.internal

CPU usage

% of all CPUs

0%
15:58 16:00 16:01

iowait softirq steal system user

Evaluate the analysis report, metrics and queries. If applies, create new issues with the label infradev or datastores to propose new

improvements to the database cluster overall.

Performance degradation analysis

z Jose Finotto @Finotto - 1 day ago owner (& [2

We had the following top 10 statements by total time in execution during this peak:

Query:

topk(10,
sum by (queryid) (
rate(pg_stat_statements_seconds_total{env="gprd", monitor="db", type="patroni",instance="patroni-06-db-gp

In this analysis, we are considering a 15 minutes interval.

https://thanos-query.ops.gitlab.net/graph?g0.range_input=15m&g0.end_input=2021-01-
12%2016%3A15&g0.step_input=10&g0.max_source_resolution=0s&g0.expr=topk(10%2C%20%0A%20%20sum%20by%20 (queryid) %2
0(%0A%20%20%20%20rate (pg_stat_statements_seconds_total%7Benv%3D%22gprd%22%2C%20monitor%3D%22db%22%2C%20typ
€%3D%22patroni%22%2Cinstance%3D%22patroni-06-db-gprd.c.gitlab-
production.internal%3A9187%22%7D%5B1m%5D)%0A%20%20)%0A)&g0.tab=0

Performance degradation analysis

Jose Finotto @Finotto - 1 day ago

The outputs are:

O Enable query history

topk(10,
sum by (queryid) (
rate(pg_stat_statements_seconds_total{env="gprd", monitor="db", type="patroni" instance="patroni-06-db-gprd.c.gitlab-production.internal:9187"}[1m])
)
)

m - insert metric at cursor - * & deduplication & partial response

Graph Console

- 15m + « 2021-01-12 16:15 » 10

O stacked

Only raw data v

Owner (=

Load time: 289n
Resolution: 10s
Total time series

Performance degradation analysis

O Enable query history

Load time: 183ms
topk(10, Resolution: 10s

sum by (queryid) (Total time series: 1
rate(pg_stat_statements_seconds_total{env="gprd", monitor="db", type="patroni",instance="patroni-06-db-gprd.c.gitlab-production.internal:9187"}[1m])
)
)

12
®

m - insert metric at cursor - * & deduplication & partial response

Graph Console

« | 2021-01-12 16:15:00 »
Element Value
{queryid="3926004648916863976"} 0.8178287140222235
{queryid="-6386890822646776524"} 0.6909796111596127
{queryid="7164302182213446947"} 0.5237485621202116
{queryid="6507699644791286491"} 0.2640517462795186
{queryid="9095629593792855100"} 0.2503059345329853
{queryid="-402488551284107289"} 0.23028561521334467
{queryid="1712385180720443674"} 0.20701351823647401
{queryid="2298083782068675032"} 0.157706000044224
{queryid="-5002940052336095544"} 0.12475411511170224
{queryid="7366711010424350814"} 0.12231413964376164

Remove Grap

Add Graph

Performance degradation analysis

-

Jose Finotto @Finotto - 1 day ago

Owner e MO 27

Those querylds are the following SQL statements:

Queryld

3926004648916863976

-6386890822646776524

7164302182213446947

6507699644791286491

Query

SELECT "ci_builds"* FROM "ci_builds" INNER JOIN "projects" ON "projects"."id" = "ci_builds"."project
ci_builds.project_id = project_features.project_id LEFT JOIN (SELECT "ci_builds"."project_id", count()
"ci_builds""type" = $1 AND ("ci_builds""status" IN ($2)) AND "ci_builds"."runner_id" IN (SELECT "ci_r
"ci_runners""runner_type" = $3) GROUP BY "ci_builds""project_id") AS project_builds ON ci_builds.p
("ci_builds""status" IN ($4)) AND "ci_builds"."runner_id" IS NULL AND "projects""shared_runners_en.
= $6 AND (project_features.builds_access_level IS NULL or project_features.builds_access_level > $J
("projects"."visibility_level" = $9 OR (EXISTS (WITH RECURSIVE "base_and_ancestors" AS ((SELECT '
(namespaces.id = projects.namespace_id)) UNION (SELECT "namespaces"* FROM "namespaces", "t
"namespaces"."id" = "base_and_ancestors"."parent_id")) SELECT $10 FROM "base_and_ancestors" A!
namespace_statistics ON namespace_statistics.namespace_id = namespaces.id WHERE "namespace
(COALESCE(namespaces.shared_runners_minutes_limit, $11, $12) = $13 OR COALESCE(namespace_
COALESCE((namespaces.shared_runners_minutes_limit + COALESCE(namespaces.extra_shared_run
COALESCE(namespaces.extra_shared_runners_minutes_limit, $17)), $18) * $19)))) AND (NOT EXISTS
"taggings"."taggable_type" = $21 AND "taggings"."context" = $22 AND (taggable_id = ci_builds.id) Al
ORDER BY COALESCE(project_builds.running_builds, $25) ASC, ci_builds.id ASC
J/application:web,correlation_id:01TEVX3GF3VGAVE6TYFMR82EJFN/

SELECT "users"* FROM "users" INNER JOIN "project_authorizations" ON "users"."id" = "project_auth
"project_authorizations"."project_id" = $1 /application:web, correlation_id:Lmz5Aaf8Vpa/

UPDATE "ci_builds" SET "runner_id" = 380987, "status" = 'running', "started_at" = '2020-10-29 21:0C
"updated_at" = '2020-10-29 21:00:54.568589", "lock_version" = 2 WHERE "ci_builds"."id" = 8201577
/application:web,correlation_id:4ze9HF2IXC9/

SELECT SUM((("project_statistics"."repository_size" + "project_statistics"."Ifs_objects_size") - "projec
INNER JOIN routes rs ON rs.source_id = projects.id AND rs.source_type = 'Project' INNER JOIN "proj¢
"project_statistics"."project_id" = "projects"."id" WHERE (rs.path LIKE 'gitlab-org/%') AND ("project_s'
"project_statistics"."Ifs_objects_size") > "projects"."repository_size_limit" AND "projects"."repository_s
/application:web,controller:merge_requests,action:index,correlation_id:HIfxW?7Ir8b1/

Performance degradation analysis

z Jose Finotto @Finotto - 1 day ago owner ® @ &£

We had the following top 10 statements by total calls in execution during this peak:

Query:

topk(10,
sum by (queryid) (
rate(pg_stat_statements_calls_total{env="gprd", monitor="db", type="patroni",instance="patroni-06-db-gprd

In this analysis, we are considering a 15 minutes interval.

https://thanos-query.ops.gitlab.net/graph?g0.range_input=15m&g0.end_input=2021-01-
12%2016%3A15&g0.step_input=10&g0.moment_input=2021-01-
08%2014%3A15%3A00&g0.max_source_resolution=0s&g0.expr=topk(10%2C%20%0A%20%20sum%20by%20 (queryid)%20(%0A%20
%20%20%20rate(pg_stat_statements_calls%7Benv%3D%22gprd%22%2C%20monitor%3D%22db%22%2C%20type%3D%22patroni%?2
2%2Cinstance%3D%22patroni-06-db-gprd.c.gitlab-production.internal%3A9187%22%7D%5B1m%5D) %0A%20%20)%0A) &g0.tab=0

Edited by Jose Finotto 1 day ago

Performance degradation analysis

Jose Finotto @Finotto - 1 day ago owner ® [&£ :
The outputs are:
O Enable query history
Load time: 283ms
topk(10, Resolution: 10s

sum by (queryid) (Total time series: 17
rate(pg_stat_statements_calls{env="gprd", monitor="db", type="patroni" instance="patroni-06-db-gprd.c.gitlab-production.internal:9187"}[1m])

)

) ®
- insert metric at cursor - & deduplication & partial response
Graph Console

- 15m + « | 2021-01-1216:15 » 10 O stacked | Only raw data v

Performance degradation analysis

Those querylds are the following SQL statements:

Queryld

833913155023572892

73367110635711796

6769309683899657633

6974950735891200787

6749620766035719574

6504150523421693673

-2372450153195223637

Query
SELECT $1

SELECT "projects"* FROM "projects" WHERE "projects"."id" = $1 LIMIT $2
/application:web,controller:issues,action:index,correlation_id:tt4UcIFKFU9/

SELECT "routes"* FROM "routes" WHERE "routes"."source_id" = $1 AND "routes"."source_type" =
$2 LIMIT $3 /application:web,controller:issues,action:index,correlation_id:tt4UclFKFU9/

SELECT "namespaces"* FROM "namespaces" WHERE "namespaces"."id" = $1 LIMIT $2
/application:web, correlation_id:e7d284e6-07ff-4cOe-aeda-e6880d46b20a/

SELECT "taggings"* FROM "taggings" WHERE "taggings"."taggable_id" = $1 AND
"taggings"."taggable_type" = $2
/application:web,controller:projects,action:show,correlation_id:ZiDjjveMIXa/

SELECT "tags"* FROM "tags" INNER JOIN "taggings" ON "tags"."id" = "taggings"."tag_id" WHERE
"taggings"."taggable_id" = $1 AND "taggings"."taggable_type" = $2 AND (taggings.context = $3
AND taggings.tagger_id IS NULL) /application:web,correlation_id:dnT2GXhKuX2/

SELECT $1 AS one FROM ((SELECT "ci_runners"* FROM "ci_runners" INNER JOIN
"ci_runner_projects" ON "ci_runner_projects"."runner_id" = "ci_runners"."id" WHERE
"ci_runner_projects"."project_id" = $2) UNION ALL (SELECT "ci_runners"* FROM "ci_runners"
INNER JOIN "ci_runner_namespaces" ON "ci_runner_namespaces"."runner_id" = "ci_runners"."id"
INNER JOIN "namespaces" ON "namespaces"."id" = "ci_runner_namespaces"."namespace_id"
AND "namespaces""type" = $3 WHERE "namespaces"."id" IN (WITH RECURSIVE
"base_and_ancestors" AS ((SELECT "namespaces"* FROM "namespaces" INNER JOIN "projects"

ON "projects"."namespace_id" = "namespaces"."id" WHERE "namespaces"."type" = $4 AND
"projects"."id" = $5) UNION (SELECT "namespaces"* FROM "namespaces", "base_and_ancestors"

i o s SR G B e

Postgres-checkup

Nikolay and his team develop postgres-checkup
(https://qitlab.com/postgres-ai/postgres-checkup) -- a tool for
automated health-checks of Postgres databases, that
contains:

e 28 reports, checking various aspects of Postgres production database health and
performing detailed SQL workload analysis.

e Reports contain 3 detailed parts: observations, conclusions, and
recommendations.

e \Very lightweight checks, unobtrusive activities working well under heavy load, in
large databases. Does not require any setup on the servers.

e Multi-node analysis: the master is checked together with its replicas.

https://gitlab.com/postgres-ai/postgres-checkup

postgres-checkup

e Weekly tech audit reports that augment the existing monitoring (prometheus, postgres_exporter,
grafana, thanos):

o track Postgres and components versions

o track settings and setting deviations

o bloat control (tables, indexes)

o index health (invalid, unused, redundant, etc)
o deep query analysis

o object sizes

o int4 PKs

o ..and more

H002 Unused Indexes

Observations

Data collected: 2021-01-11 13:40:38 +0000 UTC
Current database: gitlabhq_production

Stats reset: 6 mons 27 days 14:26:00 ago (2020-06-13 23:13:01 +0000 UTC)

Never Used Indexes

The list is limited to 50 items. Total: 178.

Table

TOTAL:

ci_builds

ci_builds

ci_builds
merge_request_diffs
projects

projects

projects

projects

users

ci_runners
merge_request_metrics
notes

namespaces

namespaces

Index

index_ci_builds_on_protected
index_ci_builds_on_user_id_and_created_at_and_type_eq_ci_build
index_ci_builds_on_queued_at
index_merge_request_diffs_on_external diff_ store
index_projects_on_runners_token
index_projects_on_mirror_last_successful_update_at
index_projects_on_last_repository_check_failed
index_projects_on_pending_delete
index_users_on_accepted_term_id

index_ci_runners_on_is_shared
index_mr_metrics_on_target_project_id merged_at_time_to_merge
note_mentions_temp_index
index_namespaces_on_shared_and_extra_runners_minutes_limit

index_namespaces_on_ldap_sync_last_update_at

10.220.16.106
usage

10.220.16.101
usage

10.220.16.102
usage

10.220.16.103
usage

10.220.16.104
usage

10.220.16.105
usage

10.220.16.107
usage

10.220.16.108
usage

¥V Index
size

165.66 GiB

45.55 GiB

30.01 GiB

22.23 GiB

8.41 GiB

3.90 GiB

3.90 GiB

3.89 GiB

3.89 GiB

2.07 GiB

2.03 GiB

2.00 GiB

1.75GiB

1.27 GiB

1.22GiB

Table size

7.27TiB

0.92 TiB

0.92 TiB

0.92 TiB

27.54 GiB

4.77 GiB

4.77 GiB

4.77 GiB

4.77 GiB

3.55 GiB

337.54 MiB

6.06 GiB

299.19 GiB

2.56 GiB

2.56 GiB

K003 Top-50 Queries by total_time

Observations

Data collected: 2021-01-11 13:40:41 +0000 UTC
Current database: gitlabhq_production

Master (10.220.16.106)

Start: 2021-01-11T13:05:57.091968+00:00
End: 2021-01-11T13:39:07.728772+00:00
Period seconds: 1990.6368

Period age: 00:33:10.636804

Error (calls): 0.00 (0.00%)
Error (total time): 0.00 (0.00%)

The list is limited to 50 items.

#
(query id)

1
(-6386890822646777000)

2
(-7232084447659837000)

Query

SELECT "users".” FROM "users" INNER

JOIN "project_authorizations" ON

"users"."id" = "project_authorizations"."user_id"
WHERE "project_authorizations"."project_id"

= $1 /"application:web,correlation_id:Lmz5Aaf8Vpa*/
Eull query

WITH RECURSIVE "namespaces_cte"

AS ((SELECT "namespaces"."id",
"members"."access_level" FROM "namespaces”
INNER JOIN "members"” ON "namespaces"."i
="members"."source_id" WHERE "members"."type"
=$1 AND "members"."source_type"

= $2 AND "namespaces"."type" =

$3 AND "members"."user_id" = $4

AND "members"."requested_at" IS

NULL AND (access_level >= $5))

UNION

(
SELECT "namespaces"."id", LEAST(

"members"."access_level", "group_group_links"."group_access")

AS access_level FROM "namespaces"

INNER JOIN "group_group_links"

ON "group_group_links"."shared_group_id"
="namespaces"."id" INNER JOIN

"members" ON "group_group_links"."shared_with_group_id"
="members"."source_id" AND "members"."source_type"
= $6 AND "members"."requested_at"

IS NULL AND "members"."user_id"

= $7 AND "members"."access_level"

> $8 WHERE "namespaces"."type"

=89)

UNION

(SELECT "namespaces"."id",

AREATEQT/"mamhare! "annace laval’

Calls

72,767
36.55/sec
1.00/call
0.16%

41,162
20.68/sec
1.00/call
0.09%

¥ Total time

1,140,899.14 ms
573.133 ms/sec
15.679 ms/call
15.52%

995,280.30 ms
499.981 ms/sec
24.180 ms/call
13.54%

Rows

7,371,979
3.71K/sec
101.31/call
4.57%

89,469,596
44.95K/sec
2.18K/call
55.44%

shared_blks_hit

33,889,906 blks
17.03K blks/sec
465.73 blks/call
2.86%

504,881,421 blks
253.63K blks/sec
12.27K blks/call
42.55%

shared_blks_read

816,616 blks
410.23 blks/sec
11.22 blks/call
9.36%

33,166 blks
16.66 blks/sec
0.81 blks/call
0.38%

shared_blks_dirtied

4,870 blks
2.45 blks/sec
0.07 blks/call
0.20%

954 blks
0.48 blks/sec
0.02 blks/call
0.04%

shar|

148 |
0.07
0.00
3.124

1 blk|
0.00
0.00
0.02f

K002 Workload Type ("The First Word" Analysis)

Observations

Data collected: 2021-01-11 13:40:41 +0000 UTC
Current database: gitlabhg_production

Master (10.220.16.106)

Start: 2021-01-11713:05:57.091968+00:00
End: 2021-01-11T13:39:07.728772+00:00
Period seconds: 1990.6368

Period age: 00:33:10.636804

Error (calls): 0.00 (0.00%)
Error (total time): 0.00 (0.00%)

Workload

type Calls ¥ Total time Rows
41,827,896 5,018,032.35 ms 68,804,876
1 bl 21.02K/sec 2521.320 ms/sec ~ 34.57K/sec
1.00/call 0.120 ms/call 1.64/call
94.08% 68.28% 42.63%
752,897 1,066,397.37 ms 90,927,447
2 with 378.22/sec 535.707 ms/sec 45.68K/sec
1.00/call 1.416 ms/call 120.77/call
1.69% 14.51% 56.34%
999,462 755,406.99 ms 741,537
3 update 502.08/sec 379.480 ms/sec 372.51/sec
1.00/call 0.756 ms/call 0.74/call
2.25% 10.28% 0.46%
837,581 502,066.21 ms 873,121
4 insert 420.76/sec 252.214 ms/sec 438.61/sec
1.00/call 0.599 ms/call 1.04/call
1.88% 6.83% 0.54%
select ... 40,689 7,361.69 ms 40,689
5 for [no 20.44/sec 3.698 ms/sec 20.44/sec
key] 1.00/call 0.181 ms/call 1.00/call
update 0.09% 0.10% 0.03%

Replica servers:
Replica (10.220.16.101)

Start: 2021-01-11T13:05:51.048781+00:00
End: 2021-01-11T13:36:10.229216+00:00
Period seconds: 1819.18044

Period age: 00:30:19.180435

Workload
type Calls ¥V Total time Rows

20,300,433 9,206,677.68 ms 29,084,119
1 selact 11.16K/sec 5060.893 ms/sec 15.99K/sec

shared_blks_hit

604,189,040 blks
303.52K blks/sec
14.44 blks/call
50.92%

512,703,313 blks
257.56K blks/sec
680.97 blks/call
43.21%

48,497,397 blks
24.37K blks/sec
48.52 blks/call
4.09%

21,046,160 blks
10.58K blks/sec
25.13 blks/call
1.77%

207,484 blks
104.23 blks/sec
5.10 blks/call
0.02%

shared_blks_hit

4,829,058,098 blks
2.66M blks/sec

shared_blks_read

6,911,927 blks
3.48K blks/sec
0.17 blks/call
79.21%

33,166 blks
16.66 blks/sec
0.04 blks/call
0.38%

1,211,149 blks
608.42 blks/sec
1.21 blks/call
13.88%

561,911 blks
282.28 blks/sec
0.67 blks/call
6.44%

7,997 blks
4.02 blks/sec
0.20 blks/call
0.09%

shared_blks_read

12,903,398 blks
7.10K blks/sec

shared_blks_dirtied

95,009 blks
47.73 blks/sec
0.00 blks/call
3.81%

954 blks
0.48 blks/sec
0.00 blks/call
0.04%

1,681,451 blks
844.68 blks/sec
1.68 blks/call
67.36%

711,983 blks
357.67 blks/sec
0.85 blks/call
28.52%

6,751 blks
3.39 blks/sec
0.17 blks/call
0.27%

shared_blks_dirtied

0 blks
0.00 blks/sec

shared_blks_written

3,913 blks
1.97 blks/sec
0.00 blks/call
82.55%

1 blks
0.00 blks/sec
0.00 blks/call
0.02%

533 blks
0.27 blks/sec
0.00 blks/call
11.24%

289 blks
0.15 blks/sec
0.00 blks/call
6.10%

4 blks
0.00 blks/sec
0.00 blks/call
0.08%

shared_blks_written

401,782 blks
220.86 blks/sec

blk_read_time

1,373,499.10 ms
689.980 ms/sec
0.033 ms/call
73.22%

6,402.21 ms
3.216 ms/sec
0.009 msi/call
0.34%

213,446.15 ms
107.225 ms/sec
0.214 ms/call
11.38%

282,057.24 ms
141.692 ms/sec
0.337 ms/call
15.04%

361.00 ms
0.181 ms/sec
0.009 ms/call
0.02%

blk_read_time

866,803.16 ms
476.480 ms/sec

blk_write_time

92.86 ms
0.047 ms/sec
0.000 ms/call
81.72%

0.04 ms
0.000 ms/sec
0.000 ms/call
0.04%

13.47 ms
0.007 ms/sec
0.000 ms/call
11.85%

7.18 ms
0.004 ms/sec
0.000 ms/call
6.32%

0.08 ms
0.000 ms/sec
0.000 ms/call
0.07%

blk_write_time

10,641.69 ms
5.850 ms/sec

keac

0.00
0.00

K001 Globally Aggregated Query Metrics

Observations

Data collected: 2021-01-11 13:40:41 +0000 UTC
Current database: gitlabhq_production

Master (10.220.16.106)

Start: 2021-01-11T13:05:57.091968+00:00
End: 2021-01-11713:39:07.728772+00:00
Period seconds: 1990.6368

Period age: 00:33:10.636804

Error (calls): 0.00 (0.00%)
Error (total time): 0.00 (0.00%)

Calls Total time Rows

44,458,525 7,350,264.61 ms 161,387,670
22.34K/sec 3692.419 ms/sec 81.08K/sec
1.00/call 0.165 ms/call 3.63/call
100.00% 100.00% 100.00%

Replica servers:
Replica (10.220.16.101)

Start: 2021-01-11T13:05:51.048781+00:00
End: 2021-01-11T13:36:10.229216+00:00
Period seconds: 1819.18044

Period age: 00:30:19.180435

Calls Total time Rows

21,518,698 9,393,835.91 ms 31,311,433
11.83K/sec 5163.774 ms/sec 17.22K/sec
1.00/call 0.437 ms/call 1.46/call
100.00% 100.00% 100.00%

Replica (10.220.16.102)

Start: 2021-01-11T13:05:52.314852+00:00
End: 2021-01-11713:36:39.061152+00:00
Period seconds: 1846.7463

Period age: 00:30:46.7463

Calls Total time Rows

23,905,903 9,934,511.91ms 32,988,938
12.95K/sec 5379.468 ms/sec 17.87K/sec

4 NAinall N A48 melnall 1 20Q/nall

shared_blks_read

8,726,150 blks
4.39K blks/sec
0.20 blks/call
100.00%

shared_blks_read

12,921,880 blks
7.11K blks/sec
0.60 blks/call
100.00%

shared_blks_read

13,968,380 blks
7.57K blks/sec

N EQ kL

shared_blks_dirtied

2,496,148 blks
1.26K blks/sec
0.06 blks/call
100.00%

shared_blks_dirtied

0 blks
0.00 blks/sec
0.00 blks/call
0.00%

shared_blks_dirtied

0 blks
0.00 blks/sec

NN kL

shared_blks_written

4,740 blks
2.38 blks/sec
0.00 blks/call
100.00%

shared_blks_written

402,350 blks
221.17 blks/sec
0.02 blks/call
100.00%

shared_blks_written

514,997 blks
278.87 blks/sec

NN ki

blk_read_time

1,875,765.69 ms
942.294 ms/sec
0.042 ms/call
100.00%

blk_read_time

868,082.59 ms
477.183 ms/sec
0.040 ms/call
100.00%

blk_read_time

758,241.41 ms
410.582 ms/sec

N N2 malnall

=/ Postgres.ai

— boost development of fast-growing
PostgreSQL-based projects using
thin cloning and high level of automation

Ag® GitLab cHEwYCOM MIrO NUTANDC

Qawi sk =B (ONGRES

Non-production environment weaknesses are reasons of multiple development problems

Development bottlenecks Frictionless development
(with standard staging DB) (with Database Lab)

%
%

%
s—= -)))
e —
=== —HT
X Bugs: difficult to reproduce, easy to miss @ Bugs: easy to reproduce, and fix early
X Not 100% of changes are well-verified @ 100% of changes are well-verified
X SQL optimization is hard @ SQAL optimization can be done by anyone
X Each non-prod big DB costs a lot © Non-prod DB refresh takes seconds

X Non-prod DB refresh takes hours, days, weeks © Extra non-prod DBs doesn’t cost a penny

28

Database experiments — traditional approach

o = mm mm Em Em == .y
—-— e e s e s e e ..

-—e - - - e e - -

oS T mm mm Em Em - =y
- . S e e e e e ..

-—e— - - - - - - -

Production

29

Database experiments on thin clones

o @ o I
Production . .

Thin clones — copy-on-write

N . TR

\
TN

& Thick copy of production (any size)

@ Thin clone (size starts from 1 MB, depends on changes)

Database experiments on thin clones — yes and no

Yes

- Check execution plan — Joe bot
- EXPLAIN w/o execution
- EXPLAIN (ANALYZE, BUFFERS)
- (timing is different; structure and
buffer numbers — the same)
- Check DDL
- index ideas (Joe bot)
- auto-check DB migrations
- Heavy, long queries: analytics, dump/restore
- No penalties! (think
hot_standby_feedback, locks, CPU)

No

- Load testing
- Regular HA/DR goals
- backups

(but useful to check
WAL stream, recover
records by mistake)

- hot standby

(but useful to offload very
long-running SELECTS)

Database Lab — Open-core model

A\ \ \ 4
A\ \ \ 4
A\ \ \ 4

Database Lab Engine Platform

Open-source (AGPLv3) SaaS (pricing model: S per TiB)
- Thin cloning - Web console (GUI)

- Automated provisioning and data refresh - Access control, audit

- Data transformation, anonymization - History, visualization

- Supports managed Postgres (AWS RDS, etc.) - Support

https://postgres.ai/

https://qitlab.com/postgres-ai/database-lab

— follow the links and start using it for your databases

https://gitlab.com/postgres-ai/database-lab
https://postgres.ai/

SQL optimization using Database Lab and Joe bot

GitLab Infrastructure (GCP)

Joe

Combined Instance

'o . Cloud Public)
—
.. — og Slack APl =——> @ IP Address —_— e nginx =]ﬁ[Joe @ Postgres

using Slack
Control Instance ZFS
Persistent Disk Persistent Disk

Automated checks of database migrations (DDL) using full-size thin clones provided by Database Lab

Before Database Lab:

& GitLab mext Projects v Groups v More v - Search oF Jumtd

p

o

B

S
N\ "

D Q

b

Developers test DDL on tiny databases, using only synthetic data, not seeing real behavior
Before each release, DDL is tested on staging — a reduced/old/modified data set (~5-10% of real size)
Manual code review. Very rarely the change is tested on a production clone

¥ GitLab.com > & GitLab Infrastructure Team > production > Issues > #2802

(GLEELN Opened 3 months ago by &) ops-gitlab-net Owner

2020-10-07: Postdeploy migration failure due to statement timeout
Summary
@postdeploy migration failure due to statement timeout

Marking this as high severity since it is a deployment blocker

https://ops.gitlab.net/gitlab-com/gl-infra/deployer/-/jobs/2028901

/opt/gitlab/embedded/service/gitlab-rails/db/post_migrate/20200914185610_schedule_sync_blocking_issues_count.rb

Timeline

Issues with deploying DB migrations
were not uncommon

An example:
https://gitlab.com/aitlab-com/al-infra/production/-/issues/2802

https://gitlab.com/gitlab-com/gl-infra/production/-/issues/2802

Automated checks of database migrations (DDL) using full-size thin clones provided by Database Lab

gitlab-org/database-team/gitlab-com-migrations Maintainer @ [3

Wlth Database Lab @project_278964 _bot - 1 week ago

Database migrations

Migrations included in this change have been executed on gitlab.com data for testing
purposes.

- Separate project
- security: limited access, firewall
. . 20200716234259 237.9s
- isolation: reduced codebase and no extra components p———
- COI’meCTed 1o DLE AP', able touse dblab clone 20201230161206 0.6s

2021010110640 0.9s

Migration Total runtime

20210102164121 7.3s

- Onany Cl build in the main project (“gitlab”) has DDL, then:
- a Cl build in this special project is triggered
- DDL is auto-verified on a fresh clone (lag <6h) provided by DLE
- detailed artifacts are available to the Database Team and Infrastructure

- Output - Postgres logs
- pg_stat_* - pgsa sampling
- production timing estimates - summary

- summary is automatically posted as an MR comment

Database Lab “Observed sessions”

Postg Console B
Organization Switch Organizations / Demo / Observed sessions / Database Lab observed session #34
Demo
Database Lab observed session #34 [T
B2 Dashboard
Summary
& Database Lab
Status: [X Failed |
Instances Session: #34
Observed sessions Pm}ef’" demo
DLE instance: #35
Duration: 2m, 5s
- A
SOt Optimization Created: 2 months ago
Ask Joe (D Branch: transform
Commit: 34e1264a823825f37aa78a7d6878c029f3e29301
History Triggered by: Anatoly
PR/MR: https://gitlab.com/postgres-ai/ci-example/-/merge_requests/2
%o Checkup
Checklist
Reports
m Dangerous locks is not observed during the session
® Settings (13 intervals with locks of 10 allowed)
Session duration is within allowed interval
Passed
General (2m, 55 of 1h allowed)
Members

Observed intervals and details
Access tokens

Billing Hide intervals ~

Audit Started at Duration
v 2020-11-03 14:58:19 UTC 10s
& 2020-11-03 14:58:29 UTC 10s

ransactionid":null,"mode" create table t1 as select i,

AccessExclusiveLock","locktype": "relatiol
'2020-11-

100", "state:"active", "wait_event_type":"I0","wait_event":"WALInitWrite","xact_start":"2020-11-03T14:58:26.614131+00:00", "xact_duration":"00:
9", "query_duration":"00:00:13.19567","state_change":"2020-11-03T14:58:26.655413+00: 90", "state_changed_ago":"00:00:13,195666","pid":45}
:"test_small","relation":"141028", "transactionid”:null,"mode" : "AccessExclusiveLock", " locktype": "relation", "granted": true, "usename": "ci_user","query":"create table t1 as select i,
text as payload from generate_series(1, 100000000) i;","query_start":"2020-11-

6.655409+00: 00", "state": "active", "wait_event_type":"I0","wait_event":"WALInitWrite","xact_start":"2020-11-03T14:58:26.614131+00: 00", "xact_duratio
11-03T14:58:26.655409+00: 00", "query_duration":"00:00:13,195632", "state_change":"2020-11-03T14:58:26.655413+00: 00", "state_changed_ago": "0:00:13,195628" , "pi

"granted": true, "usename

0:13.236948", "query_start":"2020-

'00:00:13.23691", "query_start":"2020-
145}

& 2020-11-03 14:58:39 UTC 10s

:"test_small”,"relation":"141023", "transactionid”:null,"mode" : "AccessExclusiveLock"," Locktype": "relation","granted": true, "usename": "ci_user","query":"create table t1 as select i,
text as payload from generate_series(1, 100000000) i;","query_start":"2020-11-93T14:58:26.655409+00:00","state": "active", "wait_event_type":null,"wait_event":null,"xact_start":"2020-11-
6.614131+00: 00", "xact_duration":"00:00:23.237473", "query_start":"2020-11-03T14:58:26.655409+00: 00" ,"query_duration":"00:00:23.196195", "state_change":"2020-11~
tate_changed_ago":"00:00:23.196191", :45}

7 ,"relation” ransactionid":null,"mode": "AccessExclusiveLock"," locktype": "relatiol
text as payload from generate_series(1, 100000000) i;","query_start":"2020-11-03T14:58:26.655409+00:00",
©3714:58:26.614131+00:00"."xact duration":"00:00:23.237451"."querv start":"2020-11-83T714:58:26.655409+80:00"."querv duration":"00:00:23.196174"

create table t1 as select i,
ull,"xact_start":"2020-11-

“granted":true, "usenane":"ci_user", "query
i ait_event_type":null,"wait_event
."state change":"2020-11-

Demo time

Summary

- PostgreSQL database health check is automated
- 150+ engineers now do these activities:
- get EXPLAIN for any query for production database (not being blocked and not blocking others)
- getinsights of how DDL behaves before submitting MR for DB migration review
- learn SQL by example (using full-size databases!)
- Database team has
- Way to conduct various database experiments without need to provision new nodes and/or wait
for long data refresh
- DB migration reviews are pre-checked automatically in 100% of cases, with prediction of what

would happen during production deployment

Control over SQL performance and scalability is improved

Downtime and performance degradation risks are eliminated

WA
GitLab

Everyone can contribute

Thank you. Please feel free to follow up!

Nikolay Samokhvalov
Jose Finotto

nik@postgres.ai

[finotto@aqitlab.com
LinkedIn: linkedin.com/in/jose-c-bb4a217/8/

Twitter: @samokhvalov

LinkedIn: linkedin.com/in/samokhvalov/

mailto:jfinotto@gitlab.com
https://www.linkedin.com/in/jose-c-bb4a2178/
mailto:nik@postgres.ai
https://twitter.com/samokhvalov
https://www.linkedin.com/in/samokhvalov/

