
The Worst Day
of Your Life

Database disasters,
and how to find them.

Christophe Pettus 
PostgreSQL Experts, Inc  

FOSDEM 2021

The day started like any other.

We I had one job.

• Migrate a production database server…

• … from one Amazon instance to another…

• … with minimum downtime …

• … using streaming replication.

P1 S1

P1 S1

P1 P2

P1 P2

Profit!

What could go wrong?

36 hours later…

“Huh. That’s weird.”

Oh, no.

• Rows in P1 were missing in P2.

• Deleted rows in P1 were still on P2.

• Rows in P1 were duplicated in P2.

• … in violation of primary key constraints.

• But no one told the indexes.

It was surreal.

• Multiple versions of the same row, before
and after modification by a committed
transaction.

• Newly-created rows were not pushed over
onto the secondary.

Oh, we found it!

• The tables had a last_modified
timestamp…

• … and the bad rows clustered right around
the cutover time.

• … and queries were running!

• That must be it! Active queries at the
cutover time!

Spoiler Alert! 
 

This makes no sense.

No problem!

• Couldn’t roll back to P1, but we could fix
the database.

• Did a pg_dump / pg_restore.

• Patched up everything very, very tediously.

• Brought it back up.

We’re so smart it hurts.

• Problem solved!

• Brought up a new secondary…

• … after making sure there were no
queries running.

• Everything looks great.

Declare Victory!

6 hours later…

“Hey, Christophe…”

Oh, no, not again.

• The problem reoccurred on the new
secondary.

• Same problem.

• Same symptoms.

• Even though the obvious clear no-question
must-be-it cause was gone.

So, what happened?

• It was, in fact, a PostgreSQL bug.

• Downgraded to an earlier minor release.

• Waited until the next minor release,
upgraded.

We I did everything wrong.

• Didn’t keep the parts.

• Didn’t work up the stack.

• Didn’t methodically track down the error.

• Ruled out a PostgreSQL bug prematurely.

When disaster
strikes.

Bad things are happening.

• CPU is pegged.

• Out of disk space.

• Data corruption.

• Lock pileups.

The First Step.

Crisis
=

Problem + Panic

First, do no harm.

• If you’re down, you’re down. Take a deep
breath, and move cautiously.

• Minimize communication channels.

• Don’t delete anything unless you know
that is a solution to the problem.

• Like, you’re out of disk and it’s full of
text logs.

text logs.

• “The disk filled up, so we deleted the log
files. Now, PostgreSQL won’t start.”

• “What did you delete?”

• “Everything in the log directory.”

• “Um, which log directory?”

“pg_xlog”

“Is that bad?”

“Yes.”

Some
Bad

Situations.

“All good servers are
alike, but each bad server is
bad in its own way.”
— Anna Katerina,
 Database Administrator

Situation:  
CPU Pegged.

Possible reason:  
Connection Storm
• Starting a new connection in PostgreSQL

requires forking a new process.

• A large number of these at the same time
can be very high CPU.

• Especially bad if connections are opening
and closing fast.

Resolution:
Don’t Do That.
• Add a pooler into the stack.

• Fix thundering herd problems on mass
cache invalidation, app server restart, etc.

• Fix error conditions that can force a
connection close.

Possible reason:  
Bad Query Plans
• Previously-benign queries suddenly having

bad plans.

• BitmapIndex/Heap scan in place of Index
scan, etc.

• Often caused by tables and indexes getting
badly bloated.

Resolution:
Fix Bloat Issues.
• Make sure autovacuum is keeping up.

• Do manual VACUUM operations if
required.

• Rebuild badly bloated indexes.

• Use pg_repack to repack badly bloated
tables.

Situation:  
Out of Disk Space.

Possible reason:  
WAL Pileup.
• Write-ahead log segments not being

recycled by PostgreSQL.

• archive_command failing.

• Logical replication slot not keeping up.

Resolution:
Fix Underlying Issue.
• Fix archive_command.

• Drop the bad replication slot.

• Can require a CHECKPOINT or two to
recycle the log segments… be patient!

Possible reason:  
Text Log Bloat.
• Text logs can be very big if configured

improperly.

• Some systems require that they be written
to the same volume as the database.

Resolution:
Reduce Chattiness.
• Decrease per-query log volume.

• Move to a separate volume.

• Move to a remote collector.

• Fortunately, safe to delete to free space.

Situation:  
Lock Pileups.

Possible reason:  
Migrations.
• Schema changes generally require exclusive

locks.

• PostgreSQL is first-in, first-out in lock
grants.

• Schema change waits, other sessions pile up
behind it.

Resolution:
Good Migration Technique.
• Minimize migrations that have to do full-

table scans or writes.

• Do changes during low-load periods.

• In extreme cases, take a maintenance
window.

Possible reason:  
Long-Running Transactions.
• All locks are held to the end of the

transaction that took them.

• Easy for locks to build up.

• Long-running transactions can block other
transactions.

• Idle-in-transaction sessions are particularly
problematic.

Resolution:
Reduce Transaction Length.
• Fix idle-in-transaction sessions.

• Only use prepared transactions if you must.

• Break up very large operations to reduce
the time locks are held.

Possible reason:  
LWLock pileup.
• Internal lightweight locks that protect

various PostgreSQL data structures.

• New tools have provided more visibility
into waiting on them.

• No one technique for all of them.

WALWriteLock

• Held while WAL segments are being
written to disk.

• Sometimes, just too much I/O.

• Increase wal_buffers.

• Turn off synchronous_commit.

ProcArrayLock

• Often a sign of too many concurrent
sessions COMMTing.

• Reduce concurrency with a pooler.

• Concurrency failures are often non-linear.

buffer_content

• Waiting to map a shared buffer to the
underlying disk page.

• Often a sign that the working set is much
larger than shared_buffers.

• Increase shared_buffers (although be
judicious; 30%+ of RAM is usually not a
benefit).

Situation:  
Data Corruption.

Step 1:
Restore last-good

backup

Step 2:
Receive the praise

of a grateful
nation.

Time for coffee!

Oh.

• You don’t have a known-good backup?

• That’s a shame.

• Sadly, even good backups can…

• have hidden long-term corruption.

• be too old.

• (whisper it) be hit by PostgreSQL bugs.

Save all the parts!

• Stop PostgreSQL.

• Do a full file-system level backup.

• Keep that backup safe.

• Make changes methodically, and document
each step.

Index Corruption.

• The most common kind of corruption.

• Drop the index in a transaction, and
confirm that solves the problem.

• If so, rebuild the index.

• If not, it’s probably not index corruption.

Take a pg_dump.

• pg_dump reads every row, and…

• … creates a logically-good snapshot.

• Restore that into a clean database.

Bad Data Page.

• Checksum failures, complaints about bad
headers, etc.

• Can you do a pg_dump of the table?

• zero_damaged_pages = on.

Really Bad Data Pages.

• Can you SELECT around them?

• Do a COPY out of the good data, drop
table, COPY back in.

• Or do a CREATE TABLE from the
SELECT, rename appropriately.

• DELETE just the bad rows by ctid, if you
can isolate them.

Finding bad data pages.

• Iterate through rows in PL/pgSQL…

• … with an exception block around the
SELECT.

• Catch and log any rows that throw an
exception.

• Very helpful for finding TOAST corruption.

Expecting the
Unexpected.

Planning for disaster.

• If you run a PostgreSQL installation of any
size, these things will happen to you.

• Sooner or later.

• The best way to avoid turning a problem
into a crisis is to be prepared for it.

Test. Your. Backups.

• A backup that is not tested is not a backup.

• Give them to developers.

• Use them for analytics.

• But make sure that the restore steps are
automated and foolproof…

• … because you probably will have to do
it on no sleep.

Monitor.

• Alert well before disk space exhaustion.

• Summarize errors in logs.

• Track lock waits.

• Track temporary file creation.

The right kind of leaves
backups.
• Do PITR backups.

• Don’t roll your own.

• pgBackRest

• barman.

• Corruption can lurk for an extended
period before it’s found.

PostgreSQL hygiene, 1.

• Make sure autovacuum is happening.

• Never disable it!

• Monitor query execution time.

• Note queries that are starting to slow
down.

PostgreSQL hygiene, 2.

• fsync = on

• Make sure this really happens.

• full_page_writes = on

• Very few file systems guard against torn
pages.

• Don’t kill -9 anything.

Stay up-to-date.

• Deploy minor versions as they roll out.

• Yes, the bug at the start of the
presentation was introduced in a minor
upgrade.

• That’s extremely uncommon.

• Plan an upgrade strategy so you are not
caught by a major version going EOL.

Turn on checksums.

• Flags corruption immediately.

• Does not fix the damage, though.

• Use it unless your filesystem does
checksums.

• Which it probably doesn’t.

Which host?

• Provisioning a new host can be time-
consuming.

• Even in a cloud environment.

• Can you produce your exact database
server’s configuration, including packages?

• Provision using a proper management
system (Ansible, etc.)

Test, test, test.

• Have automated test tools that do
application-level database scans.

• Tuples get lonely. Visit them once in a while.

• Don’t wait for a VACUUM FREEZE.

• Make it part of your migration / upgrade
strategy.

Let’s play a game.

• Your main data center burns to the ground.

• How do you get the database back up?

• How much data have you lost?

• For “data center,” read AWS region.

Write it down.

• Have a runbook for these situations.

• You’ll often have to go off-script…

• … but it is great to have a list of things to
try, and steps to take.

• Remember, you’ll be doing this…

… on no sleep.

Working with the
Community.

“For you, the day Bison
graced your village was
the most important day
of your life.

“But for me, it was Tuesday.”

The bug you found is the
worst thing in your world.
• But if it was the worst thing in the

developer’s world, they’d have pushed a
patch already.

• No one is paid just to fix PostgreSQL bugs.

• Everyone who can hack on PostgreSQL
internals is very, very busy.

Be thorough…

• Develop a test case, if you can.

• Document everything, even if you think it is
not important.

• If the data is sensitive, come up with an
anonymization plan.

File a bug.

• pgsql-bugs@postgresql.org

• http://www.postgresql.org/support/
submitbug/

• Read the guidelines!

mailto:pgsql-bugs@postgresql.org
http://www.postgresql.org/support/submitbug/
http://www.postgresql.org/support/submitbug/

If the bug is critical…

• … critical defined as data corruption or
repeatable server failure…

• … consider bringing it up on -hackers.

• Remember, everyone is busy with their
own crises.

Crashing / freezing bugs.

• Install the -dbg packages.

• If you are getting core dumps, get stack
traces out of them.

• Use strace to find out where things are
hung up.

Be persistent, but polite.

• Monitor any threads you start.

• Answer questions promptly and thoroughly.

• Don’t badger the developers! They don’t
work for you!

• And even if they do, be nice. :-)

• Well-documented and repeatable critical
bugs get fixed pretty fast.

Thank you!

Christophe Pettus 
PostgreSQL Experts, Inc.

pgexperts.com

thebuild.com  
 
christophe.pettus@pgexperts.com 
 
Twitter @xof

http://pgexperts.com

