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Yandex and PostgreSQL

▌ Yandex.Cloud

› 2+ petabytes of Postgres

› ~3+ million requests per second

And many other services like Yandex.Mail, Yandex.Taxi, Yandex.Maps, 
weather forecast, carsharing, food delivery etc.
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Essential expectations

› 0.9999 read availability

› 0.9995 write availability

› Scalable multi-AZ deployments

› Most up-to date copy of operational data in analytical system
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Virtualization utilize resources efficiently
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Vertical scaling is kind of failure too
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│Redundancy

9



Network block storage

NBS is a kind of redundancy

▌ But databases are working better on local drives
▌ This will not be discussed in this talk



Incrementally rebuilding copy of the DB

› WAL archive

› Streaming replication
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WAL archive

▌ Primary node calls archive_command for every segment (typically 
16Mb)

› Synchronous interface, but wal-g and pg_backrest try to solve it
▌ Standby nodes recover segments calling restore_command
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WAL archive

▌ Primary node calls archive_command for every segment (typically 
16Mb)

› Synchronous interface, but wal-g and pg_backrest try to solve it
▌ Standby nodes recover segments calling restore_command

› It’s preferred to have archive even if you use streaming replication
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Streaming replication

▌ walsender\walreciever processes work in pair sending WAL with 
granularity up to one WAL record

› Standby startup process can shuttle between archive and 
replication

▌ Cascade is possible

› Replication slots have information what was sended and appied
by replication target
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Synchronous streaming replication

› Do not acknowledge commit to client until replica has all data wrt
current transaction
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PostgreSQL TimelineId

wiki.postgresql.org/images/e/e5/FOSDEM2013-Timelines.pdf 16



pg_rewind
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pg_rewind
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Logical replication

▌ Good for replicating:

› only parts of a database

› to other systems (e.g. OLAP)

› Between different versions
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Cluster in the cloud

Sync replication Async replication

Backup

Network
Object
Storage

WAL
RW Queries

RO Queries
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Logical replication

OLAP\MR



How to find primary node?

21https://cloud.yandex.com/docs/managed-postgresql/operations/connect



How to find primary node?

22https://cloud.yandex.com/docs/managed-postgresql/operations/connect



But how do you know the node had failed?
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Make sure network timeouts work

▌ tcp_user_timeout

Libpq have some infinite timeouts relying on keepalives

▌ keepalives_count, keepalives_interval, keepalives_idle
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Maybe automate promotion?

Sync replication Async replication

Backup

Network
Object
Storage

WAL
RW Queries

RO Queries
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Logical replication

OLAP\MR



HA orchestration

› Patroni

› Stolon

› Repmgr
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Yet another HA solution
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Bird’s-eye view on pgsync

› Shared DCS (2-3k pg clusters 

per 1 DCS cluster)

› Agent on VM with PostgreSQL

› Pooler for fencing
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Primary failure
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No failover?

30



“Distributed fuzzing”
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Nemesis
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Test workload

› CREATE TABLE test (value bigint PRIMARY KEY);

try

execute “INSERT INTO test VALUES (:counter);”

remember “ok”

catch Throwable

remember “error”
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Result sets
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Why '*' is not always the best value for 
synchronous_standby_names
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Primary/replica loops

Primary
if has_leader_lock():

replicas_state = execute(“SELECT * FROM pg_stat_replication”)
save(replicas_state)

Replica
if not leader_lock_holder():

saved_state = get_replicas_state()
if saved_state.get(my_application_name)[‘sync_state’] == ‘sync’:

take_lock_and_promote()
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Partition
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Partition
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Fixed replica loop

try_take_sync_lock()

if not leader_lock_holder():

saved_state = get_replicas_state()

if saved_state.get(my_application_name)[‘sync_state’] == ‘sync’:

if has_sync_lock():

take_lock_and_promote()
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Fixed primary loop

if has_leader_lock():

sync_holder = get_sync_lock_holder()

fix_standby_names(sync_holder)

replicas_state = execute(“SELECT * FROM pg_stat_replication”)

save(replicas_state)
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Quorum replication overview
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Quorum replication failover
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Quorum replication failover
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Quorum replication failover
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Quorum replication failover
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Quorum replication failover
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So many LSNs
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Unforeseen consequences 

› SELECT pg_last_wal_receive_lsn() -> 0/403F482

› SELECT pg_last_wal_replay_lsn() -> 0/403F482

—— Restart PostgreSQL ——

› SELECT pg_last_wal_receive_lsn() -> 0/4000000

› SELECT pg_last_wal_replay_lsn() -> 0/403F482

48



Just read the WAL

start = get_replay_lsn()  # GetXLogReplayRecPtr

state[‘lsn’] = start

while read_wal(state):  # XLogReadRecord

pass

return state[‘lsn’]
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Canceling running query
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Synchronous commit guarantees

Sync replication

Partitioned primary node
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Transaction pseudocode

▌ Lock data
▌ Modify data locally
▌ Wait for

› WAL flush locally

› WAL shipment remotely
▌ Unlock data for observer
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Replicas can be inconsistent

▌ Lock data
▌ Modify data locally
▌ Wait for

› WAL flush locally

› WAL shipment remotely
▌ Client read data on Standby that is not observed on Primary
▌ Unlock data for observer
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Replicas can be inconsistent

▌ Lock data
▌ Modify data locally
▌ Wait for

› WAL flush locally

› WAL shipment remotely
▌ Client read data on Standby that is not observed on Primary
▌ Even on failed part of quorum
▌ Unlock data for observer
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Acknowledge not replicated data

▌ Primary is partitioned
▌ Lock data
▌ Modify data locally
▌ Wait for

› WAL flush locally

› WAL shipment remotely (hangs dur to network partition or 
standby promotion)

› Client cancels query, but it’s committed locally
▌ Unlock data for observer
▌ User issues INSERT ON CONFLICT DO NOTHING
▌ No WAL is written => commit is acknoledged
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Disable cancellation of executed locally query

▌ ALTER SYSTEM SET synchronous_commit_cancelation to off;

https://commitfest.postgresql.org/31/2402/



Only partial solution

▌ Primary restart still makes not-replicated data visible
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Some additional information

The topic was discussed at PGCon unconference 2020

https://wiki.postgresql.org/wiki/PgCon_2020_Developer_Unconference
/Edge_cases_of_synchronous_replication_in_HA_solutions

https://wiki.postgresql.org/wiki/PgCon_2020_Developer_Unconference/Edge_cases_of_synchronous_replication_in_HA_solutions


Changed data capture
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So you want to stream logically?

Sync replication Async replication

Backup

Network
Object
Storage

WAL
RW Queries

RO Queries
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Logical replication

OLAP\MR



Be ready to failover. Logically.

Sync replication Async replication

Backup

Network
Object
Storage

RO Queries
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OLAP\MR



Non-HA standbys
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HA host greoup



Rebuilding topology
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HA-group



Non-HA standbys

▌ Useless for CDC before logical decoding is allowed on Standby
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HA host greoup



Slots are necessary

Logical streaming start from slot’s restart position

▌ But you can only create slot on latest WAL insert pointer

No chances to have LSN on failed primary == LSN of created slot



Maybe logical archive?

Network
Object
Storage

WAL

66

Logical replication

OLAP\MR



Maybe logical decoding in WAL-G?

WAL-G already parses WAL to make backups and replay faster

Network
Object
Storage

WAL
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OLAP\MR



Synchronous standby names

Logical streaming can be ahead of

› Synchronous standby

› Quorum
▌ Maybe add post_synchronous_standby_names?
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Maybe logical pg_rewind?

69



So we have to hack the PostgreSQL

Currently we just implemented an extension to create slot in the past

› We accept the risk of catalog vacuum after promotion

› Anyway we need to stream data from PG 10,11,12,13,14 where 
things won’t change much

› But we are working to make it better
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Some word about MySQL





No timelines: separate binlogs on each host
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Switchover/Failover
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Host 1 Timeline

Host 2 Timeline

Host 3 Timeline



Nonlinear history == difficult PITR

75

Host 1 Timeline

Host 2 Timeline

Host 3 Timeline



MySQL logical replication

Some really nice concepts

› GTID sets are beautiful

› Automatic repositioning if fantastic
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Tools
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Disable cancellation of executed locally query

▌ ALTER SYSTEM SET synchronous_commit_cancelation to off;

https://commitfest.postgresql.org/31/2402/



lwaldump

▌ Usage on primary: CREATE EXTENSION lwaldump;
▌ Usage on standby: SELECT lwaldump();

https://github.com/g0djan/lwaldump



Create logical slot in the past

▌ SELECT pg_create_logical_replication_slot_lsn(name, .., restart_lsn);

https://github.com/x4m/pg_tm_aux
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HArd to get it right
but not impossible
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HArd to get it right
but not impossible

and corner cases are not that frequent actually
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x4mmm

x4mmm @yandex-team.ru

Andrey Borodin

secwall

secwall@yandex-team.ru

Waiting for questions J

Evgeny Dyukov


