

Andrey Borodin, Open Source RDBMS Development Team Lead
Evgeny Dyukov, Senior Software Engineer at Yandex.Cloud Data Platform

Caveats of replication
in HA clusters and CDC systems

Yandex and PostgreSQL

▌ Yandex.Cloud

› 2+ petabytes of Postgres

› ~3+ million requests per second

And many other services like Yandex.Mail, Yandex.Taxi, Yandex.Maps,
weather forecast, carsharing, food delivery etc.

3

Essential expectations

› 0.9999 read availability

› 0.9995 write availability

› Scalable multi-AZ deployments

› Most up-to date copy of operational data in analytical system

4

5

6

Virtualization utilize resources efficiently

7

Vertical scaling is kind of failure too

8

│Redundancy

9

Network block storage

NBS is a kind of redundancy

▌ But databases are working better on local drives
▌ This will not be discussed in this talk

Incrementally rebuilding copy of the DB

› WAL archive

› Streaming replication

11

WAL archive

▌ Primary node calls archive_command for every segment (typically
16Mb)

› Synchronous interface, but wal-g and pg_backrest try to solve it
▌ Standby nodes recover segments calling restore_command

12

WAL archive

▌ Primary node calls archive_command for every segment (typically
16Mb)

› Synchronous interface, but wal-g and pg_backrest try to solve it
▌ Standby nodes recover segments calling restore_command

› It’s preferred to have archive even if you use streaming replication

13

Streaming replication

▌ walsender\walreciever processes work in pair sending WAL with
granularity up to one WAL record

› Standby startup process can shuttle between archive and
replication

▌ Cascade is possible

› Replication slots have information what was sended and appied
by replication target

14

Synchronous streaming replication

› Do not acknowledge commit to client until replica has all data wrt
current transaction

15

PostgreSQL TimelineId

wiki.postgresql.org/images/e/e5/FOSDEM2013-Timelines.pdf 16

pg_rewind

17

pg_rewind

18

Logical replication

▌ Good for replicating:

› only parts of a database

› to other systems (e.g. OLAP)

› Between different versions

19

Cluster in the cloud

Sync replication Async replication

Backup

Network
Object
Storage

WAL
RW Queries

RO Queries

20

Logical replication

OLAP\MR

How to find primary node?

21https://cloud.yandex.com/docs/managed-postgresql/operations/connect

How to find primary node?

22https://cloud.yandex.com/docs/managed-postgresql/operations/connect

But how do you know the node had failed?

23

Make sure network timeouts work

▌ tcp_user_timeout

Libpq have some infinite timeouts relying on keepalives

▌ keepalives_count, keepalives_interval, keepalives_idle

24

Maybe automate promotion?

Sync replication Async replication

Backup

Network
Object
Storage

WAL
RW Queries

RO Queries

25

Logical replication

OLAP\MR

HA orchestration

› Patroni

› Stolon

› Repmgr

26

Yet another HA solution

27

Bird’s-eye view on pgsync

› Shared DCS (2-3k pg clusters

per 1 DCS cluster)

› Agent on VM with PostgreSQL

› Pooler for fencing

28

Primary failure

29

No failover?

30

“Distributed fuzzing”

31

Nemesis

32

Test workload

› CREATE TABLE test (value bigint PRIMARY KEY);

try

execute “INSERT INTO test VALUES (:counter);”

remember “ok”

catch Throwable

remember “error”

33

Result sets

34

Why '*' is not always the best value for
synchronous_standby_names

35

Primary/replica loops

Primary
if has_leader_lock():

replicas_state = execute(“SELECT * FROM pg_stat_replication”)
save(replicas_state)

Replica
if not leader_lock_holder():

saved_state = get_replicas_state()
if saved_state.get(my_application_name)[‘sync_state’] == ‘sync’:

take_lock_and_promote()

36

Partition

37

Partition

38

Fixed replica loop

try_take_sync_lock()

if not leader_lock_holder():

saved_state = get_replicas_state()

if saved_state.get(my_application_name)[‘sync_state’] == ‘sync’:

if has_sync_lock():

take_lock_and_promote()

39

Fixed primary loop

if has_leader_lock():

sync_holder = get_sync_lock_holder()

fix_standby_names(sync_holder)

replicas_state = execute(“SELECT * FROM pg_stat_replication”)

save(replicas_state)

40

Quorum replication overview

41

Quorum replication failover

42

Quorum replication failover

43

Quorum replication failover

44

Quorum replication failover

45

Quorum replication failover

46

So many LSNs

47

Unforeseen consequences

› SELECT pg_last_wal_receive_lsn() -> 0/403F482

› SELECT pg_last_wal_replay_lsn() -> 0/403F482

—— Restart PostgreSQL ——

› SELECT pg_last_wal_receive_lsn() -> 0/4000000

› SELECT pg_last_wal_replay_lsn() -> 0/403F482

48

Just read the WAL

start = get_replay_lsn() # GetXLogReplayRecPtr

state[‘lsn’] = start

while read_wal(state): # XLogReadRecord

pass

return state[‘lsn’]

49

Canceling running query

50

Synchronous commit guarantees

Sync replication

Partitioned primary node

51

Transaction pseudocode

▌ Lock data
▌ Modify data locally
▌ Wait for

› WAL flush locally

› WAL shipment remotely
▌ Unlock data for observer

52

Replicas can be inconsistent

▌ Lock data
▌ Modify data locally
▌ Wait for

› WAL flush locally

› WAL shipment remotely
▌ Client read data on Standby that is not observed on Primary
▌ Unlock data for observer

53

Replicas can be inconsistent

▌ Lock data
▌ Modify data locally
▌ Wait for

› WAL flush locally

› WAL shipment remotely
▌ Client read data on Standby that is not observed on Primary
▌ Even on failed part of quorum
▌ Unlock data for observer

54

Acknowledge not replicated data

▌ Primary is partitioned
▌ Lock data
▌ Modify data locally
▌ Wait for

› WAL flush locally

› WAL shipment remotely (hangs dur to network partition or
standby promotion)

› Client cancels query, but it’s committed locally
▌ Unlock data for observer
▌ User issues INSERT ON CONFLICT DO NOTHING
▌ No WAL is written => commit is acknoledged

55

Disable cancellation of executed locally query

▌ ALTER SYSTEM SET synchronous_commit_cancelation to off;

https://commitfest.postgresql.org/31/2402/

Only partial solution

▌ Primary restart still makes not-replicated data visible

57

Some additional information

The topic was discussed at PGCon unconference 2020

https://wiki.postgresql.org/wiki/PgCon_2020_Developer_Unconference
/Edge_cases_of_synchronous_replication_in_HA_solutions

https://wiki.postgresql.org/wiki/PgCon_2020_Developer_Unconference/Edge_cases_of_synchronous_replication_in_HA_solutions

Changed data capture

59

So you want to stream logically?

Sync replication Async replication

Backup

Network
Object
Storage

WAL
RW Queries

RO Queries

60

Logical replication

OLAP\MR

Be ready to failover. Logically.

Sync replication Async replication

Backup

Network
Object
Storage

RO Queries

61

OLAP\MR

Non-HA standbys

62

HA host greoup

Rebuilding topology

63

HA-group

Non-HA standbys

▌ Useless for CDC before logical decoding is allowed on Standby

64

HA host greoup

Slots are necessary

Logical streaming start from slot’s restart position

▌ But you can only create slot on latest WAL insert pointer

No chances to have LSN on failed primary == LSN of created slot

Maybe logical archive?

Network
Object
Storage

WAL

66

Logical replication

OLAP\MR

Maybe logical decoding in WAL-G?

WAL-G already parses WAL to make backups and replay faster

Network
Object
Storage

WAL

67

OLAP\MR

Synchronous standby names

Logical streaming can be ahead of

› Synchronous standby

› Quorum
▌ Maybe add post_synchronous_standby_names?

68

Maybe logical pg_rewind?

69

So we have to hack the PostgreSQL

Currently we just implemented an extension to create slot in the past

› We accept the risk of catalog vacuum after promotion

› Anyway we need to stream data from PG 10,11,12,13,14 where
things won’t change much

› But we are working to make it better

70

Some word about MySQL

No timelines: separate binlogs on each host

73

М

Switchover/Failover

74

Host 1 Timeline

Host 2 Timeline

Host 3 Timeline

Nonlinear history == difficult PITR

75

Host 1 Timeline

Host 2 Timeline

Host 3 Timeline

MySQL logical replication

Some really nice concepts

› GTID sets are beautiful

› Automatic repositioning if fantastic

76

Tools

77

Disable cancellation of executed locally query

▌ ALTER SYSTEM SET synchronous_commit_cancelation to off;

https://commitfest.postgresql.org/31/2402/

lwaldump

▌ Usage on primary: CREATE EXTENSION lwaldump;
▌ Usage on standby: SELECT lwaldump();

https://github.com/g0djan/lwaldump

Create logical slot in the past

▌ SELECT pg_create_logical_replication_slot_lsn(name, .., restart_lsn);

https://github.com/x4m/pg_tm_aux

80

HArd to get it right
but not impossible

81

HArd to get it right
but not impossible

and corner cases are not that frequent actually

82

x4mmm

x4mmm @yandex-team.ru

Andrey Borodin

secwall

secwall@yandex-team.ru

Waiting for questions J

Evgeny Dyukov

