
STUMBLING STONES
WHEN MIGRATING

FROM ORACLE

BY LAURENZ ALBE

ABOUT
ME AND MY
COMPANY

■ Who is Laurenz Albe?

■ Who is CYBERTEC?

LAURENZ ALBE
SENIOR DATABASE CONSULTANT

■ contributions to PostgreSQL and related
projects since 2006

■ maintainer of the Oracle Foreign Data Wrapper
■ PostgreSQL support, training, consulting and

development
■ working for CYBERTEC since 2017

M A I L laurenz.albe@cybertec.at

P H O N E +43 2622 930 22-7

W E B www.cybertec-postgresql.com

Specialized in data services

About
Inhouse development

Owner-managed since 2000

International team of developers

DATABASE SERVICES

DATA Science

▪ Artificial Intelligence

▪ Machine Learning

▪ Big Data

▪ Business Intelligence

▪ Data Mining

▪ etc.

POSTGRESQL Services

▪ 24/7 Support

▪ Training

▪ Consulting

▪ Performance Tuning

▪ Clustering

▪ etc.

▪ ICT

▪ University

▪ Government

▪ Automotive

▪ Industry

▪ Trade

▪ Finance

▪ etc.

CLIENT
SECTORS

AGENDA
■ Overview

■ Understanding open source and PostgreSQL

■ Migrate the schema (DDL)

■ Data migration

■ Migrating stored code

■ Migrating SQL

■ Migrating the application

■ Migration tools

OVERVIEW

MIGRATION STEPS

■ understand open source software and PostgreSQL

■ migrate the schema (DDL)

■ migrate the data

■ migrate stored code (PL/SQL, Java)

■ migrate SQL

■ migrate the application

MIGRATION STEPS
(ACTUAL SIZE)
■ understand open source software and PostgreSQL
■ migrate the schema (DDL)

■ migrate the data

■ migrate stored code (PL/SQL, Java)

■ migrate SQL
■ migrate the application

UNDERSTANDING OPEN
SOURCE AND POSTGRESQL

THE SHIFT TO OPEN SOURCE
■ This is written by some enthusiasts in their spare time, right?

■ Is this “enterprise ready”?

■ Where can I get support?

■ Why do I have to install and integrate so many different pieces of

software (PostgreSQL, PostGIS, backup software, extensions, GUI clients,

monitoring,...)?

■ What if open source software is no longer maintained?

■ It’s for free, so I don’t have to invest anything, right?

TRANSACTIONS, UNDO,
MULTIVERSIONING
■ both Oracle and PostgreSQL use multiversioning, so concurrency and locking

are similar (but not equal!)
■ big transactions are no problem in PostgreSQL (but long transactions are), so

less need to “batch” large transactions
■ no UNDO tablespace in PostgreSQL, no “snapshot too old”, immediate rollback

But:
■ UPDATE-heavy workloads are problematic in PostgreSQL (may need “HOT

update” and autovacuum tuning)
■ table size will grow (all that visibility information)
■ I no statement-level rollback

SCHEMAS, USERS AND
SYNONYMS
Oracle has a reduced metadata model:
■ a schema is always tied to a user with the same name
■ ownership is determined by the schema
■ only objects in your own schema can be referenced without schema

Synonyms are there largely to overcome these limitations
■ can often be replaced by an appropriate search_path setting
■ for other uses, a view is usually just as good

VIEWS AND DEPENDENCIES
■ Oracle tables be dropped/modified even if views depend on them

■ views become “invalid” and cause an error when used

■ PostgreSQL is stricter about data integrity

■ Schema upgrade procedures more difficult in PostgreSQL
■ but to make up for it, we have transactional DDL

■ Materialized View support much more sophisticated in Oracle
■ replace ON COMMIT REFRESH with triggers in PostgreSQL

TABLESPACES
■ tablespaces are important in Oracle

■ Oracle essentially implements its own file system

■ PostgreSQL uses the host file system
■ tablespaces are rarely necessary

■ Resist the urge to create tablespaces during migration!

MIGRATE THE
SCHEMA (DDL)

DATA TYPE TRANSLATION
■ PostgreSQL has way more data types, so the problem is often which

one to choose
■ DATE to date or timestamp(0)?
■ NUMBER to integer, bigint, double precision or numeric?

■ Oracle allows foreign keys from NUMBER(5) to NUMBER
■ must take care to migrate them to the same data type

■ BLOB to bytea or Large Objects?
■ easy, use bytea

DATA MIGRATION

GENERAL CONSIDERATIONS
■ Oracle makes it hard to export data in clear text

■ probably on purpose to make migration harder

■ this is often the least complicated step, but the one that causes the
most down time

■ reducing down time is difficult
■ run migration of table data in parallel
■ use “change data capture” for replication and switch-over with

little down time (only available with commercial tools)

DATA MIGRATION PROBLEMS
■ corrupted strings in Oracle (more common than you think!)

invalid byte sequence for encoding "UTF8": 0x80

■ zero bytes in Oracle
invalid byte sequence for encoding "UTF8": 0x00
■ can be filtered out during migration

■ infinite numbers (~ and -~)
■ can be mapped to Infinity in double precision, problematic

otherwise

Most of these problems have to be solved in Oracle before migration.

MIGRATING STORED CODE

MIGRATING PL/SQL
■ PL/pgSQL is a clone of PL/SQL, but sufficiently different

(e.g., RETURNS vs. RETURN)

■ some tools provide automated translation, but a lot of manual work may remain

■ no COMMIT/ROLLBACK in PostgreSQL functions, limited support in procedures
■ often in “batched deletes”, → can be omitted

■ no PRAGMA AUTONOMOUS_TRANSACTION in PostgreSQL
■ can sometimes be worked around with dblink

■ no BULK COLLECT with arrays
■ process row by row

Shift transaction management to the application.

MIGRATING PL/SQL PACKAGES
■ option to use closed source fork from EDB

■ workaround: creating a schema with functions
■ no “package global variables” and types

■ no large PL/SQL library in PostgreSQL
■ move code to the application
■ re-implement code in PL/Python or PL/PerlU
■ extension “orafce” provides some compatibility

MIGRATING PL/SQL TRIGGERS
■ has to be split in two parts: trigger function and trigger

■ benefit: easier code reuse

■ auto-increment triggers fetching from a sequence can be simplified to
column DEFAULT

■ no “logon triggers” in PostgreSQL
■ avoid or shift code to the application

MIGRATING SQL

WHERE DOES SQL OCCUR?
■ application code

■ ORMs and other abstraction layers reduce this

■ views

■ PL/SQL code

■ column DEFAULT clauses

■ index definitions

Usually requires manual intervention; migration tools may help.

SQL: JOIN SYNTAX
SELECT b.col1, a.col2
FROM base_table b, attributes a
WHERE b.id=a.b_id(+);

has to be translated to

SELECT b.col1, a.col2
FROM base_table b

LEFT JOIN attributes a ON b.id = a.b_id;

Always simple, but annoying!

SQL: EMPTY STRINGS
■ Oracle treats empty strings as NULL

■ as a consequence,
'hello' || NULL
is not NULL in Oracle

■ translate into
concat('hello', NULL)
or use “coalesce(strcol, '')”

This is a very frequent problem.

SQL: CURRENT DATE/TIME
■ most Oracle code uses proprietary functions:

■ SYSDATE
■ SYSTIMESTAMP

■ has to be translated:
■ the literal translation would be clock_timestamp()
■ sometimes current_date or current_timestamp is better

■ easy with search and replace

SQL: SEQUENCES
■ Oracle code to fetch the next sequence value:

asequence.NEXTVAL

■ PostgreSQL code to fetch the next sequence value:
nextval('asequence')

■ both don’t support the SQL standard way:
NEXT VALUE FOR asequence

MIGRATING THE APPLICATION

MIGRATING THE APPLICATION
■ can be hard

■ hard coded dynamically composed SQL everywhere

■ can be almost trivial
■ use an ORM that supports both Oracle and PostgreSQL

■ requires thorough testing

■ some differences (transaction handling, concurrency) may cause
problems only during testing

MIGRATION TOOLS

POSTGRESQL FORKS
■ some PostgreSQL forks (for example EDB) provide good compatibility

■ but believe no claim of “drop-in replacement”
■ carefully consider if you want to end up with closed source

■ consider using “orafce” for more compatibility
■ open source, but still another dependency

■ it may be worth the effort to invest a little more and end up with free
standard PostgreSQL

ORA2PG
■ the most widely used open source migration tool

■ time-tested and proven, but not 100% bug free

■ generates a DDL script, exports and imports data
■ universally usable, but takes its time

■ attempts to translate PL/SQL
■ simple search/replace, quality limited

ORA_MIGRATOR
■ open source, uses the Oracle Foreign Data Wrapper

■ directly migrates data into the target database
■ no export/import, therefore faster

■ requires oracle_fdw in the target database
■ usually not an option with hosted databases

■ no attempt to migrate PL/SQL

■ provides a simple replication solution using triggers to reduce down
time

CYBERTEC MIGRATOR

CYBERTEC MIGRATOR
■ commercial

■ comfortable GUI driven migration

■ fast, highly parallelized data migration

■ high-quality PL/SQL conversion

■ close-to zero downtime with change data capture under development

More information:
https://www.cybertec-postgresql.com/en/products/cybertec-migrator/

https://www.cybertec-postgresql.com/en/products/cybertec-migrator/

QUESTIONS?

